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Abstract. The use of concatenated Schnorr signatures [Sch91] for the
hierarchical delegation of public keys is a well-known technique. In this
paper we carry out a thorough analysis of the identity-based signature
scheme that this technique yields. The resulting scheme is of interest
since it is intuitive, simple and does not require pairings. We prove
that the scheme is secure against existential forgery on adaptive cho-
sen message and adaptive identity attacks using a variant of the Forking
Lemma [PS00]. The security is proven in the Random Oracle Model
under the discrete logarithm assumption. Next, we provide an estima-
tion of its performance, including a comparison with the state of the art
on identity-based signatures. We draw the conclusion that the Schnorr-
like identity-based signature scheme is arguably the most efficient such
scheme known to date.

Keywords: identity-based signature, lightweight cryptography, provable
security, Schnorr, random oracle model.

1 Introduction

Digital signatures are fundamental primitives in public key cryptography. They
ensure the authenticity of the originator of a digital document and the integrity
of that document, while they also prevent that the originator can repudiate that
very same document later on. A signature on a given bit-string is valid if it
passes the associated verification test, which takes as inputs a verification key,
a purported signature, and a document. In traditional signature schemes the
verification key is a mathematical object taken at random from some set. An
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external binding between the verification key and the signing entity is there-
fore needed. This binding takes the form of a certificate, which is created by a
Certification Authority.

The concept of identity-based signature (IBS) was introduced by Shamir
[Sha85]. The idea is that the identity of the signer is used as the verification
key. This dispenses with the need of an external binding. The identity can be
any string that singles out the entity, for instance, a social security number or an
IP address. Identity based systems have a drawback, namely, the entity cannot
build the signing key by itself. Instead, a Trusted Third Party (TTP) is in charge
of assigning and delivering, via a confidential channel, the secret key to each user.
This in sharp contrast to the traditional setting, where the secret key is gener-
ated by the user itself and kept secret. Still scenarios where a TTP creates a
signing/verification key pair on behalf of the user are quite often found in prac-
tice. This is the case of the Spanish Electronic Identity Card eDNI [oIA08, EG08]
and the digital signature token services provided by DigiNotar [Dig08]. There,
the key pair is stored together with a certificate in a smart card to be owned by
the relevant user.

Several IBS schemes based on factoring or RSA were proposed in the late
eighties and early nineties, for instance [Sha85, FS87, GQ90, Oka93] to name
just a few. After the revival of research on identity-based cryptography due to
the use of pairings (cf. [BSS05] Chapter 5 for an introduction to pairings), many
other IBS schemes have been proposed, for instance [SOK00, Hes03, CC02]. As a
consequence of this revival, Bellare, Namprempre and Neven [BNN04] provided
a framework for deriving security proofs for identity-based signature and iden-
tification schemes, and compiled most previous work on IBS. The most efficient
scheme of those studied in [BNN04] turns out to be an IBS scheme obtained
from a conventional signature scheme by Beth [Bet88]. Unfortunately, Beth’s
scheme lacks a security proof.

Our contribution. This work studies the identity-based signature scheme re-
sulting from sequentially delegating Schnorr signatures [Sch91]. Such a technique
is certainly well-known and it has been in use for many years and in differ-
ent contexts, e.g. [Gir91, PH97, AO99, CJT04, BSNS05, BFPW07]. We prove
that the scheme is secure against existential forgery on adaptive chosen message
and adaptive identity attacks using a variant of the Forking Lemma [PS00] by
Boldyreva, Palacio and Warinschi [BPW03]. The security is proven in the Ran-
dom Oracle Model under the discrete logarithm assumption. We show that the
resulting scheme is among the most efficient provably-secure IBS schemes known
to date, be it based on factoring, discrete logarithm or pairings. In particular
it has the same performance that the aforementioned Beth IBS scheme. This
makes it attractive for application in resource-constrained environments where
saving in computation, communication and implementation code area are a
premium.

Organization of this paper. Section 2 introduces standard definitions from
the literature. Section 3 describes our new identity-based signature scheme. In
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Section 4 we prove the security of the scheme. Section 5 compares the computa-
tional and length complexity of our scheme to other schemes from the literature.
Finally Section 6 concludes the paper.

2 Preliminaries

This section introduces the syntax and security definitions of identity-based sig-
natures and the discrete logarithm assumption. Most of it is standard, we refer
the reader to [BNN04] for a thorough explanation. We introduce some basic
notation. If S is a set then s1, . . . , sn

$← S denotes the operation of picking n
elements si of S independently and uniformly at random. We write A(x, y, . . .)
to indicate that A is an algorithm with inputs x, y, . . . and by z ← A(x, y, . . .)
we denote the operation of running A with inputs (x, y, . . .) and letting z be the
output.

2.1 Identity-Based Signatures

An identity-based signature scheme (IBS) is a quadruple (G, E ,S,V) of proba-
bilistic polynomial-time algorithms, where

• G is the parameter-generation algorithm. It takes as input the security pa-
rameter η (a positive integer and outputs the system public parameters mpk
and the master secret key msk.

• E is the key-extraction algorithm that takes as input parameters mpk, a mas-
ter key msk and an identity id and outputs a private key skid corresponding
to the user with this identity.

• S is a signing algorithm that takes as input parameters mpk, a private key
skid and a message m and outputs a signature σ.

• V is a deterministic signature verification algorithm that takes as input pa-
rameters mpk, a signature σ, a message m and an identity id and outputs
whether or not σ is a valid signature of m relative to (mpk, id).

Definition 1 (EUF-IBS-CMA). An identity-based signature scheme Σ = (G,
E ,S,V) is said to be secure against existential forgery on adaptively chosen mes-
sage and identity attacks if for all probabilistic polynomial-time adversaries A,
the probability of the experiment EUF-IBS-CMAΣ(A) = 1 defined below is
a negligible function of η. During this experiment A has access to two ora-
cles: a key-extraction oracle OE that takes as input an identity id and outputs
E(mpk, msk, id); and a signature oracle OS that takes as input an identity id and
a message m and returns a signature S(mpk, skid, m).

EUF-IBS-CMAΣ(A) :
(mpk, msk)← G(η)
(id�, m�, σ�)← AOE(·),OS(·,·)(mpk)
return V(mpk, σ�, m�, id�)
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Some restrictions apply. In particular, it is required that id� and (id�, m�) are
not equal to any query made to the oracles OE(·) and OS(·, ·) respectively, and
that the same id cannot be queried to OE(·) twice (see [BNN04] for details).

Definition 2 (Discrete Logarithm Assumption). We say that a group gen-
eration function (G, g, q) ← Gen(η) generates DL-secure groups if for all proba-
bilistic polynomial-time algorithms A, the probability

P[(G, g, q)← Gen(η); a $← Zq : a← A(G, q, g, ga)]

is a negligible function of η.

3 The Construction

The idea behind the construction is to use two concatenated Schnorr signa-
tures [Sch91]. This technique is certainly not new and has been used else-
where [Gir91, PH97, AO99, CJT04, BSNS05, BFPW07]. This said, the benefits
of this technique in terms of efficiency and simplicity for the design of identity-
based signatures seem to have gone unnoticed in the relevant literature as far as
we are aware of (see Section 5).

Roughly speaking, the scheme works as follows. Firstly, the TTP produces a
Schnorr signature on the identity of the user by using the master secret key. This
signature implicitly defines a unique Schnorr-like public key for which only the
user knows the corresponding private key. Next, the user builds a second Schnorr-
like signature, this time on the message, by using its private key. The verification
of a signature on message m under identity id implicitly checks whether the two
concatenated Schnorr signatures are correct. Details are given below.

• The global parameters generation algorithm G on input η outputs public
parameters mpk and a master secret key msk where: (G, g, q) is generated by
calling the group generation algorithm Gen on input η. G is the description
of a group of prime order q = q(η) with 2η ≤ q < 2η+1 and g is a generator of
G. G : {0, 1}∗ → Zq, H : {0, 1}∗ → Zq are descriptions of hash functions. Let
z be a random element from Zq and set (mpk, msk) =

(
(G, g, q, gz, G, H), z

)
.

• The key-extraction algorithm E on input global parameters mpk, a master
secret key msk = z and an identity id, picks r

$← Zq and sets y = r + z ·
H(gr, id) mod q. Then it outputs the secret key skid = (y, gr). Note that gr

is actually public information even though it is part of the secret key.

• The signing algorithm S on input parameters mpk, user private key skid =
(y, gr) and a message m proceeds as follows. It selects a

$← Zq and computes
b = a + y ·G(id, ga, m). Then it outputs the signature σ = (ga, b, gr).

• The verification algorithm V on input parameters mpk = (G, g, q, G, H, gz),
a signature σ = (ga, b, gr), a message m and an identity id proceeds as
follows. It outputs whether or not the equation gb = ga(grgzc)d holds, where
c = H(gr, id) and d = G(id, ga, m).
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4 Security of the Construction

This section analyzes the security of the proposed scheme in the random oracle
model.

Theorem 3. The construction above is secure with respect to Definition 1, in
the random oracle model, if the group generation function Gen generates discrete
logarithm secure groups. More precisely, there exist adversaries B1,B2 satisfying
either

AdvDL
B1
≥ Adveuf-ibs-cma

A (η)
QG

(
Adveuf-ibs-cma

A (η)
Q2

G

− 1
2η

)

or

AdvDL
B2

(η) ≥ Adveuf-ibs-cma
A (η)

(
(Adveuf-ibs-cma

A (η))3

(QGQH)6
− 3

2η

)
.

Proof. Assume there is an adversary A that wins the game EUF-IBS-CMA with
non-negligible probability. Eventually, A outputs an attempted forgery of the
form σ = (A, B, R). Let E be the event that σ is a valid signature and R
was contained in an answer of the signing oracle OS . Let NE be the event
that σ is a valid signature and R was never part of an answer of OS . Clearly,
Adveuf-ibs-cma

A (η) = P[E] + P[NE ].

Next we build the following adversaries B1,B2 against the discrete logarithm
assumption. Intuitively, B1 breaks the DL-assumption when the event E happens
and B2 in case of NE .
B1 takes as argument the description of a group (G, q, g) and a challenge gr

with r
$← Zq and tries to extract the discrete logarithm r. To do so it will run

the adversary A, for which simulates its environment as follows:

• B1 picks a random i ← [QG], where QG is the maximal number of queries
that the adversary A performs to the random oracle G. Let id� (the target
identity) be the identity in the i-th query to the random oracle G. Next, B1

chooses z
$← Zq and sets public parameters mpk = (G, q, g, G, H, mpk = gz)

where G, H are descriptions of hash functions modeled as random oracles.
As usual, B1 simulates these oracles by keeping two lists LG, LH containing
the queried values together with the answers given to A.

• Every time A queries the key extraction oracle OE , for user id, B1 chooses
c, y

$← Zq, sets R = g−zcgy and adds ((R, id), c) to the list LH . Then it
returns the key (y, R) to A.

• When A makes a call to the signature oracle (id, m) with id �= id�, B1 simply
computes id’s private key as described in the previous bullet. Then it runs
the signing algorithm S and returns the produced signature to A.

• When A makes a call to the signature oracle (id, m) with id = id�, B1 chooses
t

$← Zq, B
$← G, sets R = g−zc(gr)t, c = H(id, gr) and A = B(grgzc)−d. Then

it returns the signature (A, B, R) to the adversary A.
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• B1 runs the algorithm MFY,1(mpk) as described in Lemma 1. Here algorithm
Y is simply a wrapper that takes as explicit input the answers from the
random oracles. Then it calls A and returns its output together with two
integers I, J . This integers are the indexes of A’s calls to the random oracles
G, H with the target identity id�.

algorithm MFY,1(mpk) :
Pick random coins ρ for Y

s1 . . . sQG

$← Zq

(I, J, σ0)← Y (mpk, s1 . . . sQG ; ρ)
if (I = 0 ∨ J = 0) then return ⊥
s1

I . . . s1
QG

$← Zq

(I1, J1, σ1)← Y (mpk, s1, . . . sI−1, s
1
I . . . s1

QG
; ρ)

if ((I, J) �= (I1, J1) ∨ sI = s1
I) then return ⊥

else return σ0, σ1

In this way we get two forgeries of the form σ0 = (id, m, (A, B1, R)) and
σ1 = (id, m, (A, B2, R)). Let d1 be the answer from the random oracle G
given to A in the first execution, i.e., sI in MFY,1(mpk), and let d2 be the
second answer s1

I . If the identity id is not equal to the target identity id�

then B1 aborts. Otherwise it terminates and outputs the attempted discrete
logarithm (B1 −B2)(td1 − td2)−1.

Next we show that B1’s output is indeed the discrete logarithm r of the
challenge Gr. Since both signatures are valid we get that

gB1 = A(Rgzc)d1 and gB2 = A(Rgzc)d2

where c = H(gr, id) and R = g−zcgrt. Hence, B1 = log A + rtd1 and B2 =
log A + rtd2 and therefore r = (B1 −B2)(td1 − td2)−1.

Next we need to lower bound success probability of B1 against the discrete log-
arithm assumption. To this aim we use the Multiple-Forking Lemma of
Boldyreva, Palacio and Warinschi [BPW03], which we include for the sake of
self-containment. The lemma is a further generalization of the General Forking
Lemma proposed by Bellare and Neven [BN06] to multiple random oracles and
signatures. The General Forking Lemma itself is a generalization of the Forking
Lemma, originally proposed in [PS00]. Intuitively, this lemma states that, in
the random oracle model, if there is an algorithm (a forger) that can produce
a forgery, then it is possible to get a different forgery on the same message (by
changing the answer of the random oracle).

Lemma 1 (Multiple-Forking Lemma [BPW03]). Fix α ∈ Z
+ and a set

S such that |S| ≥ 2. Let Y be a randomized algorithm that on input x and
a sequence of elements s1 . . . sα ∈ S, returns a triple (I, J, σ) consisting of two
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algorithm MFY,n(x) :
Pick random coins ρ for Y

s1 . . . sα
$← S

(I, J, σ0)← Y (x, s1 . . . sα; ρ)
if (I = 0 ∨ J = 0) then return ⊥
s1

I . . . s1
α

$← S
(I1, J1, σ1)← Y (x, s1, . . . sI−1, s

1
I . . . s1

α; ρ)
if ((I, J) �= (I1, J1) ∨ sI = s1

I) then return ⊥
for i = 2 ; i < n ; i = i + 2 do

si
1 . . . si

α
$← S

(Ii, Ji, σi)← Y (x, s1 . . . sJ−1, s
i
J , . . . , si

α; ρ)
if ((Ii, Ji) �= (I, J) ∨ si

J = si−1
J ) then return ⊥

si+1
I . . . si+1

α
$← S

(Ii+1, Ji+1, σi+1)← Y (x, s1 . . . sJ−1, s
i
J , . . . , si

I−1, s
i+1
I , . . . , si+1

α ; ρ)
if ((Ii+1, Ji+1) �= (I, J) ∨ si+1

J = si
J) then return ⊥

endfor
return σ0 . . . σn

Fig. 1. Multiple-forking algorithm

integers associated to Y and a bitstring σ. Let n ≥ 1 be an odd integer and x a
bitstring. The multiple-forking algorithm MFY,n associated to Y and n is defined
as in Figure 1. Let

acc = P[x $← PG; s1 . . . sα
$← S; (I, J, σ)← Y (x, s1 . . . sα) : I ≥ 1 ∧ J ≥ 1]

frk = P[x $← PG : MFY,n(x) �= ⊥].

Then

frk ≥ acc

(
accn

α2n
− n

|S|
)

and therefore

acc ≤ n+1
√

α2n frk + n+1

√
nα2n

|S|

To bound the success probability of B1 against de discrete logarithm assump-
tion first notice that with probability 1/QG the target identity id� equals the
identity id output by the adversary. Then, it follows from Lemma 1 that

AdvDL
B1
≥ frk

QG
≥ Adveuf-ibs-cma

A (η)
QG

(
Adveuf-ibs-cma

A (η)
Q2

G

− 1
2η

)

It lacks to bound the success probability of NE . This case is slightly more
involved as it uses nested rewindings of the adversary. In this case B2 attacks
the public key of the trusted authority gz. It takes as argument the description
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of a group (G, q, g) and a challenge gz with z
$← Zq and outputs its discrete

logarithm z. To do so it will run the adversary A simulating its environment as
follows:

• At the beginning of the experiment, B2 sets public parameters mpk = (G, q, g,
G, H, mpk = gz) where G, H are description of hash functions modeled as
random oracles and gz is the challenge. As usual, B2 simulates these oracles
by keeping two lists LG, LH containing the queried values together with the
answers given to A.

• Every time A queries the key extraction oracle OE , for user id, B2 chooses
c, y

$← Zq, sets R = g−zcgy and adds ((R, id), c) to the list LH . Then it
returns the key (y, R) to A.

• When A makes a call to the signature oracle (id, m), B2 simply computes
id’s secret key as described in the previous step. Then computes a signature
by calling S, adding the respective call to the oracle G, ((id, ga, m), d) to the
list LG and gives the resulting signature to the adversary.

• B2 runs the algorithm MFA,3(mpk) as described in Lemma 1. In this way,
either B2 aborts prematurely or we get, for some identity id, some message
m and some R, four forgeries (id, m, (Ak, Bk, R)), k = 1 . . . 4 with A1 = A2

and A3 = A4. As all these signatures are valid, the following equations hold

B1 = log A1 + (log R + c1z)d1 B2 = log A2 + (log R + c1z)d2

B3 = log A3 + (log R + c2z)d3 B4 = log A4 + (log R + c2z)d4

with c1 �= c2, d1 �= d2 and d3 �= d4. Since we know c1, c2, d1, . . . , d4, a simple
computation yields

z =
B3 + B2 −B1 −B4

c2(d3 − d4)− c1(d1 − d2)
.

It follows that the success probability of B2 is bounded by

AdvDL
B2

(η) ≥ frk ≥ Adveuf-ibs-cma
A (η)

(
(Adveuf-ibs-cma

A (η))3

(QGQH)6
− 3

2η

)
�


5 Comparison to Previous Schemes

This section compares the efficiency of our scheme with previous provably secure
IBS schemes in terms of computational complexity and signature size. As it is
common for cryptographic schemes with security reductions in the random ora-
cle model, we ignore the tightness of the corresponding security reductions when
computing the length of the parameters of the schemes. Given the considerable
number of IBS schemes in the literature, we choose not to list all the existing
schemes one by one. Instead we classify previous schemes in three categories, de-
pending on whether those schemes are based on factoring, elliptic curve discrete
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logarithm (ECDL) or pairing. Then we show that our scheme can be considered
as the benchmark in efficiency in each of these categories. The reader interested
in the state of the art of IBS schemes is referred to [BNN04].

We need to introduce some terminology. In what follows, an exponentiation
refers to computing gr for randomly taken g

$← G and r
$← Zt, where G denotes

a finite group, t is its order and r is an integer. A multi-exponentiation mexp(l)
refers to computing gr1

1 · · · grl

l , where g1, . . . , gl
$← G and r1, . . . , rl

$← Zt. This
operation can be computed more efficiently than just computing l single expo-
nentiations due to an algorithm by Strauss [Str64], which is sometimes referred
as Shamir’s trick in the literature. Finally, we write |G| to denote the number of
bits needed to represent an element in G.

To start with the comparison, we need to state the efficiency properties of our
scheme. For reasons of efficiency we consider that our scheme should be built
upon a group of points G of prime order q of a suitable elliptic curve. A signature
on our scheme consists of two elements in G and one element in Zq. To sign,
one needs to compute one exponentiation (a small number of multiplications in
Zq can be ignored). To verify, one needs to compute one multi-exponentiation
mexp(3). For the sake of concreteness, we fix |G| ≈ |Zq| ≈ 256 bits for a security
level equivalent to a 128-bit symmetric key for AES (cf. [ECR]). According to
Brumley [Bru06], a multi-exponentiation mexp(3) has a cost of about 1.5 times
that of a single exponentiation.

In the first category of our classification we find factoring-based schemes. As
it is well-known, key sizes for factoring-based schemes are much larger than key
sizes for ECDL-based schemes for an equivalent security level. This implies in
particular that performing a group exponentiation in a factoring-based scheme,
where G = Z

∗
n for an RSA-modulus n, is more expensive than an exponentiation

in an ECDL-based scheme. For instance, for the 128-bit security level, |Zn| ≈
3072 bits. This already forces us to restrict our attention to the schemes in this
category that present the shortest signature length, since otherwise they would
be prohibitive in certain resource-constrained devices where communication is
expensive, like Wireless Sensor Networks [GST07]. The shortest signature size for
existing factoring-based IBS schemes is equivalent to representing two elements
in |Zn| (cf. [BNN04]), and thus signature size is still considerably bigger than
in our scheme. They do present a higher computational cost in signing and
verifying, since the most efficient algorithms require at least two exponentiations
in Zn for signing, and one mexp(2) in verifying. Computing one mexp(2) in Zn

is more costly than computing one mexp(3) in G due to the larger key size in
factoring-based schemes.

In the second place, let us consider previous provably secure ECDL-based
schemes. A comparison to previous schemes yields that our scheme is the most
efficient in all three features, namely, in signature size, signing cost and verifying
cost. Indeed, our scheme enjoys the same efficiency as the scheme named as Beth
IBS scheme in [BNN04], which to our knowledge was the most efficient ECDL-
based IBS scheme to date. In sharp contrast to our case, the security of the Beth
IBS scheme is still unproven (cf. [BNN04]).
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It remains to compare our scheme with existing pairing-based schemes. To this
end, we need to recall some facts about pairings (see [BSS05] for a comprehensive
introduction). Let G1,G2 and GT be finite Abelian groups in which the discrete
logarithm is believed to be hard. A pairing is a bilinear function e : G1×G2 → GT .
Let G1 = E(Fp) denote an elliptic curve over the finite field Fp. Let the order
of G1 be divisible by a primer r such that r also divides pα − 1, where α is the
order of p in Z

∗
r and is called the MOV embedding degree. The modified Tate

pairing e(·, ·), which is the bilinear map usually recommended, takes values in
the subgroup GT of F

∗
pα of order r and is defined in two ways, depending on

whether E is a supersingular or ordinary curve.
In the supersingular case G1 = G2 = E(Fp). For supersingular curves the best

parameter choices are in characteristic 3, and in this case α = 6 and |F∗
pα | ≈ 3072.

As a consequence, |G1| ≥ 3072/6 = 512, since in groups equipped with a pairing
an algorithm solving the (finite-field) discrete logarithm in GT can be used to
compute the ECDL in G1.

Ordinary curves can also be used to implement pairings, but in this case
G2 is set to be a subgroup of E(Fpα). Several techniques have been presented
[BKLS02, SB06, GPS06, DSD07] in order to improve efficiency and bandwidth.
For instance, by using an appropriate map, certain points in E(Fp12) can be
compressed to points in a sextic twist E(Fp2). Therefore, typical parameters
would be |G1| ≥ 256, α = 12 and |G2| ≥ 2 · 256 = 512.

In the pairing-based IBS category, the shortest-length signature schemes for
pairings over supersingular curves consist of two elements in G1. In the ordi-
nary curves category, the shortest signatures consist of two elements in G1, as
in [Her06], or alternatively one element in G1 and one element in Zq, where
q = |G1|, as in the scheme [BLMQ05] by Barreto et al. In the supersingular case,
a signature has length of at least 1024 bits. This is in favor of our scheme, since
our signatures are 768 bits long.

A more detailed comparison is needed in the case of Herranz and Barreto
et al. schemes when pairings are implemented using ordinary curves. Then in
both schemes the signature size is smaller than ours in about 256 bits, which is
in our disadvantage. However, our scheme significantly outperforms the above
mentioned schemes in computational time. We discuss that below.

5.1 The Case of Herranz and Barreto et al. Schemes

In the scheme proposed by Herranz, signing requires 1 exponentiation in G1 plus
1 hash-to-group evaluation, which generally has a non-negligible computational
cost [BF03]. In contrast, our scheme only needs 1 exponentiation in G1, and
therefore our signing algorithm is marginally more efficient than Herranz’s. As
for verifying, Herranz’s scheme needs to compute 1 exponentiation in G1, 1 hash-
to-group operation and 2 pairings. The latter operation can be replaced by the
product of two pairings, which by a trick by Granger and Smart [GS06], has a
cost of about 1.46 times that of a single pairing.



A Schnorr-Like Lightweight Identity-Based Signature Scheme 145

Thus we need a figure on the computational cost of pairings. The most efficient
implementation we are aware of is due to Devegili, Scott and Dahab [DSD07].
They report to compute a pairing for the 128-bit security level using Barreto-
Naehrig curves in about 9.04 · 107 clock cycles with the Philips HiPerSmartTM

smartcard. The latter is an instantiation of the MIPS32�-based SmartMIPS�

architecture with various instruction set enhancements to facilitate the imple-
mentation of popular cryptographic algorithms.

In order to compare the cost of computing a pairing versus the cost of expo-
nentiating in G1, we use a result by Großsch̊adl, Szekely and Tillich [GST07].
They report that computing an exponentiation in the NIST curve P-256 (that al-
lows for efficient elliptic curve computations) requires 4.25·106 clock cycles in the
133 MHz StrongARM processor, the latter being used in resource-constrained
devices like wireless sensor networks. Therefore, we can estimate that currently
computing a pairing can be as expensive as 21 exponentiations in G1 at the
128-bit security level. We conclude that Herranz’s scheme verification algorithm
requires a computational effort equivalent to 31 exponentiations in the NIST
curve P-256.

Barreto et al. scheme needs to compute one exponentiation in G1 and one
exponentiation in GT for signing. For verification, it computes 1 exponentiation in
G2, 1 exponentiation in GT plus 1 pairing. Exponentiating in G2 and GT requires
a higher computational cost than computing an exponentiation in G1, the exact
cost depending on how the arithmetic on those groups is implemented. We were
not able to find explicit estimates for these particular operations, so we leave
them un-quantified. In any case, while our scheme requires 1.5 exponentiations
in G1 for signing, Barreto et al. requires a computational effort equivalent to 21
exponentiations in G1 (for the pairing) plus one exponentiation in G2 plus one
exponentiation in GT .

Figure 2 summarizes the performance comparison between the Schnorr-like
scheme and [BLMQ05, Her06]. expG�

indicates the cost of computing an exponen-
tiation in G�, and assumes that a pairing costs about 21 exponentiations in G1. As
a result, our scheme outperforms previous schemes in the pairing-based category,
except for signature size, where the benchmark is still [BLMQ05, Her06]. The new
scheme drastically outperforms IBS pairing-based schemes in verification time.

Scheme Signature Sign Verification
size

Schnorr-like 768 bits 1 expG1
1.5 expG1

Barreto et al. 512 bits 1 expG2
+ 1 expGT

21 expG1
+ 1 expG2

+ 1 expGT

Herranz 512 bits > 1 expG1
31 expG1

Fig. 2. Efficiency comparison among [BLMQ05, Her06] and Schnorr-like schemes for
the 128-bit security level. expG�

indicates the cost of computing an exponentiation in
G�. For the sake of comparison, expG1

≤ expG2
and expG1

≤ expGT
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6 Conclusion

In this work we have studied in detail the identity-based signature scheme yield
by the concatenation of two Schnorr signatures. We have proven it secure under
the discrete logarithm assumption using the random oracle methodology. The
Schnorr-like IBS scheme outperforms in computational cost and underlying secu-
rity assumption every single previously proposed provably secure identity-based
signature scheme. Moreover, our signatures have also smaller bit complexity
than any other provably secure scheme in the literature, with the sole exception
of [BLMQ05, Her06]. Last but not least, the new scheme avoids the heavy code
machinery need by pairing-based schemes. The properties enjoyed by our new
scheme make it specially suited for deployment in resource-constrained devices
where savings in computation and communication are a premium, e.g. wireless
sensor networks.

Acknowledgements

The authors wish to thank the anonymous reviewers for helpful comments.

References

[AO99] Abe, M., Okamoto, T.: Delegation chains secure up to constant length.
In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 144–156. Springer, Heidelberg (1999)

[Bet88] Beth, T.: Efficient zero-knowledge identification scheme for smart cards.
In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 77–84.
Springer, Heidelberg (1988)

[BF03] Boneh, D., Franklin, M.K.: Identity-Based encryption from the Weil pair-
ing. SIAM Journal of Computing 32(3), 586–615 (2003); This is the full
version of an extended abstract of the same title presented in: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–615. Springer, Heidelberg
(2001)

[BFPW07] Boldyreva, A., Fischlin, M., Palacio, A., Warinschi, B.: A closer look at
PKI: Security and efficiency. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 458–475. Springer, Heidelberg (2007)

[BKLS02] Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for
pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

[BLMQ05] Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient
and provably-secure identity-based signatures and signcryption from bi-
linear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788,
pp. 515–532. Springer, Heidelberg (2005)

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and
a general forking lemma. In: Proceedings of the 13th ACM conference on
Computer and communications security (CCS 2006), pp. 390–399. ACM,
New York (2006)



A Schnorr-Like Lightweight Identity-Based Signature Scheme 147

[BNN04] Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based
identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg
(2004); The full version appears in Cryptology ePrint Archive: Report
2004/252

[BPW03] Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes
for delegation of signing rights. Cryptology ePrint Archive, Report
2003/096 (2003), http://eprint.iacr.org/

[Bru06] Brumley, B.B.: Efficient three-term simultaneous elliptic scalar multipli-
cation with applications. In: F̊ak, V. (ed.) Proceedings of the 11th Nordic
Workshop on Secure IT Systems—NordSec 2006, Linköping, Sweden, Oc-
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