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Abstract. This paper establishes a novel model for RFID schemes where
readers are not continuously connected to the back office, but only peri-
odically. Furthermore, adversaries are not only capable of compromising
tags, but also of compromising readers. This more properly models large
scale deployment of RFID technology such as in public transport tick-
eting systems and supply-chain management systems. In this model we
define notions of security (only legitimate tags can authenticate) and of
privacy (no adversary is capable of tracking legitimate tags). We show
that privacy is always lost at the moment that a reader is compromised
and we develop notions of forward and backward privacy with respect to
reader corruption. This models the property that tags cannot be traced,
under mild additional assumptions, for the time slots before and after
reader corruption. We exhibit two protocols that only use hashing that
achieve these security and privacy notions and give proofs in the random
oracle model.

1 Introduction

During the last decade, the use of RFID technology has expanded enormously.
It is currently deployed in electronic passports, tags for consumer goods, public
transport ticketing systems, race timing, and countless other applications.

The widespread use of RFID has raised privacy concerns. Since most RFID
tags will send a unique identifier to every reader that attempts to communicate
with it, an adversary could build an “RFID profile” of an individual, i.e., the
collection of unique identifiers of the RFID tags that the individual usually
carries. This profile could be used to track this person, or to infer behavior such
as spending or traveling patterns, jeopardizing this person’s privacy.

For simple RFID applications (for instance the tagging of products in stores
to enable RFID based cash registers), the privacy problems could be solved
by sending the kill-command to the RFID tags (upon leaving the store). This,
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however, is useless for situations such as access control, where legitimate readers
need to verify the authenticity of tags.

Various RFID schemes using cryptographic techniques that guarantee both
security (authenticity of accepted tags) and privacy have been proposed. Because
RFID tags are low-cost and low-power devices, they are limited in the type of
cryptography that can be used. In particular, it is not possible to use public key
cryptography in a way that is both cheap and fast enough. Additionally, most
RFID tags are not tamper-resistant and do not have the ability to keep time,
since they lack an independent energy source.

Protocols that have been proposed to achieve both security and privacy
are, among others, OSK/AO [OSK03,AO05], NIBY [NIBY06], and YA-TRAP
[Tsu06]. In the literature, RFID schemes are typically modeled as a multi-
threaded reader that enjoys an always-active secure communication channel with
the back office [JW07,Vau07,Avo05]. Although this approach is simple and prac-
tical, it cannot model several widely deployed RFID systems nowadays.

In practice, in a number of large-scale RFID systems, readers remain off-line
most of the time and have only periodic connection with the central back office.
During that connection, the readers and the back office synchronize. Typical ex-
amples of this configuration are transport ticketing systems such as the London
Oyster card and the Dutch OV-chipkaart, where readers in buses and trains con-
nect to a central database during the night and remain off-line during the day.
This configuration enforces the migration of sensitive information from the back
office to the readers, since readers now have to be able to decide by themselves
whether to grant access to a passenger or not, to name an example. This con-
figuration brings new security threats: readers might de-synchronize with other
readers, tags or with the back office itself. Besides that, if an attacker steals
or tampers with a reader that now contains sensitive information it should not
compromise the security and privacy of the whole system. Concurrently and in-
dependently this issue has also been studied by Avoine et al. in [ALM09]; both
results were presented at RFIDSec’09.

Our contribution. In this paper, we propose to explicitly model the existence of
multiple readers, that, just as tags, can be compromised by the adversary and
their secret information obtained. With respect to tag corruption, we consider a
“forward” notion of privacy: if a tag is corrupted in the future, its past behavior
is still private. With respect to reader corruption, we consider both a “forward”
and a “backward” notion of privacy: if a reader is corrupted in the future, privacy
of past communication should still be guaranteed, but also if some reader has
been corrupted in the past, privacy should still be guaranteed in the future. See
Figures 1 and 2.

Because readers only periodically connect to the back office, one cannot ex-
pect to retain privacy of tags (or security of the system) at the moment a reader
is destroyed. More precisely, during a time slot (a period between two successive
synchronizations of the whole system) in which a reader gets corrupted, security
and privacy cannot be guaranteed. There is the additional point that tags do
not have an intrinsic notion of time. For forward privacy, since the adversary
can corrupt a reader in the future, privacy is only guaranteed if the last commu-
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Fig. 1. Self-stabilizing Forward Privacy

nication of the tag (before the time slot where reader corruption takes place) is
with a legitimate reader. When there is no reader corruption, this condition is
not necessary and our notion of forward privacy reduces to the standard one.

For backward privacy, note that a corrupted reader will always be able to
communicate with a tag that has not communicated with the system since the
reader corruption took place. It is not until a tag communicates with a legitimate
reader that one can expect to regain privacy guarantees.
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Fig. 2. Self-stabilizing Backward Privacy

We formulate three notions of privacy: forward privacy with respect to tag
corruption, self-stabilizing forward privacy with respect to reader destruction,
and self-stabilizing backward privacy with respect to reader destruction. “Self-
stabilizing” refers to the fact that privacy is not immediately guaranteed outside
the time slot where reader destruction takes place, but only after communicating
with a legitimate reader.

As in [Vau07], we consider several classes of adversaries (depending on their
ability to corrupt or destroy tags, destroy readers, or see the result of an authen-
tication protocol between a tag and a reader) and the privacy (and security)
notions are parameterized by the class of adversaries under consideration. We
model the privacy requirements as in [JW07]. An attacker generates two uncor-
rupted tags. Later, he get access to only one of them and has to guess which one
it is. The privacy requirement is that he only guesses correctly with probability
negligibly larger than 1

2
. The difference between the three privacy notions is ex-

pressed in the different capabilities the adversary has. For privacy with respect to
tag corruption, the adversary cannot destroy readers. For self-stabilizing forward
privacy with respect to reader destruction, the adversary can only corrupt read-
ers after being given access to the challenge tag. For self-stabilizing backward



privacy with respect to reader corruption, it can only corrupt readers before it
is given access to the challenge tag.

Finally, we analyze three protocols. First, because we have slightly modi-
fied the notion of privacy from the literature combining ideas from [JW07] and
[Vau07], we present a slightly modified version of the OSK protocol that obtains
security and privacy with respect to tag corruption. We then describe two other
protocols, using only hashing, that additionally achieve self-stabilizing forward
and backward privacy with respect to reader corruption. In all three cases, we
prove the security and privacy of the scheme in the random oracle model.

Structure of the paper In Section 2 we formally model an RFID system with off-
line readers. We model adversaries, as usual, as probabilistic polynomial-time
algorithms that interact with an RFID system by means of oracles. In Section 3,
we define the notions of security and privacy, using a game-based approach.
Section 4 describes the three protocols achieving our security and privacy notions
and the proofs in the random oracle model. Finally, Section 5 concludes.

2 System Model

To model this scenario, consider a scheme where readers have a secure commu-
nication channel with the back office that is only active during synchronization.
We assume that readers are single threaded, i.e., can only have one active pro-
tocol instance with a tag at a time. After running a protocol with a tag, the
reader has an output that is typically the identity of the tag. New readers and
tags can be added to the system at will. The formal definition follows.

Definition 2.1 (RFID scheme). An RFID scheme Π consists of:

• a probabilistic polynomial-time algorithm SetupSystem that takes as input
the security parameter 1η and outputs the public key pair (sk, pk) of the
system.
• a probabilistic polynomial-time algorithm SetupReader that takes as input
the secret key of the system sk and outputs the initial state of the reader s
and the reader’s secret k.
• a probabilistic polynomial-time algorithm SetupTag that takes as input the
secret key of the system sk and outputs the initial state of the tag s and the
tag’s secret k.
• a polynomial-time interactive protocol Sync between the readers and the
back-office.
• a polynomial-time interactive protocol between a reader and a tag, where
the reader returns Output. Output is typically the identity of the tag.

An adversary is a probabilistic polynomial-time algorithm that interacts with
the system by means of different oracles. The environment keeps track of the
state of each element in the system and answers the oracle queries according to
the protocol. Besides adding new tags and readers to the system and being able
to communicate with them, an adversary can also corrupt tags. This models



techniques like differential power analysis and chip slicing. By corrupting a tag
an adversary retrieves its internal state. Something similar happens with readers,
although in this case we assume that the system can detect that. In the example
of the transport ticketing system we assume that the company would detect if
a bus gets stolen or a missing gate at the metro station. An adversary can also
initiate the synchronization protocol which models waiting until the next time-
period. Additionally, an adversary might be capable of seeing the result of an
authentication attempt by external means, for instance, by looking whether a
door opens or not. The formal definition of adversary follows.

Definition 2.2 (Adversary). An adversary is a probabilistic polynomial-time
algorithm that takes as input the system public key pk and has access to the
following oracles:

• CreateReader(R) creates a new reader by calling SetupReader(sk) and up-
dates the state of the back-office. This new reader is referenced as R.
• DestroyReader(R) destroys reader R and returns its internal state s to the
adversary. After calling DestroyReader, oracle calls with this reference are no
longer valid.
• CreateTag(T ) creates a new tag T by calling SetupTag(sk) and updates the
state of the back-office. This new tag is referenced as T .
• CorruptTag(T ) returns the internal state s of the tag T .
• Launch(R) attempts to initiate a new protocol instance at reader R. If R
has already an active protocol instance then Launch fails and returns zero.
Otherwise it starts a new protocol instance and returns one.
• Send(m,A) sends a message m to the entity A and returns its response m′.
The entity A can either be a reader R or a tag T .
• Result(R) outputs whether or not the output of the last finished protocol
instance at reader R is not ⊥, i.e., Output 6= ⊥.
• Sync() initiates the interactive protocol Sync between the readers and the
back-office.

Definition 2.3. We denote by O the set of oracles {CreateReader,CreateTag,
CorruptTag, Launch, Send, Sync,Result} and O+ = O ∪ {DestroyReader}.

3 Security Definitions

This section elaborates on the security and privacy definitions from the litera-
ture, adapting them to our model. Then, it also discusses (when applicable) the
relations among them.

The main goal of an RFID system is security, which means that readers are
able to authenticate legitimate tags. Throughout this paper we focus on privacy.
For the sake of self containment, we include here the following security definition
which is an adapted version of the security definition proposed in [Vau07].

Definition 3.1 (Security). An RFID scheme is secure if for all adversariesA and
for all readers R, the probability that R outputs the identity of a legitimate tag
while the last finished protocol instance at readerR and this tag did not have any



matching conversation, is a negligible function of η. Matching conversation here
means that R and the tag (successfully) executed the authentication protocol.

Next we define privacy with respect to tag corruption. We compose the defini-
tions of Juels and Weis [JW07] and Vaudenay [Vau07] since each of them has its
advantages: the former is indistinguishability based, which makes it more prac-
tical; the latter has the drawback of being simulation based but is stronger and
allows for a variety of adversaries with custom capabilities. Privacy is defined in
an IND-CCA like fashion where the adversary tries to win the privacy game. In
this game, the environment creates system parameters by calling SetupSystem.
Then it gives the public key of the system pk to the adversaryA0. This adversary
has access to the set of oracles O. Eventually, A0 must output two uncorrupted
challenge tags T ?

0 and T ?
1 . Then, the environment chooses a random bit b and

gives the adversary A1 access to T ?
b . At this point, the original references to T ?

0

and T ?
1 are no longer valid. Again, the adversary has access to all oracles O.

Finally, the adversary outputs a guess bit b′. The adversary wins the game if
b = b′. The formal definition follows.

Definition 3.2 (Privacy game).

Priv-GameΠ,A(η) :
(sk, pk)← SetupSystem(1η)
T ?
0 , T

?
1 ← A

O
0 (pk)

b← {0, 1}
b′ ← AO

1 (T
?
b )

winif if b = b′.

The challenge tags T ?
0 and T ?

1 must be uncorrupted, which means that no
CorruptTag(T ?

{0,1}) query has been made. Adversaries implicitly pass state.

In general, it is hard to define a realistic adversarial model as different appli-
cations have different requirements. Following the lines of Vaudenay [Vau07], we
consider different classes of adversaries depending on their capabilities. The no-
tions of forward, weak and narrow adversaries are due to Vaudenay. Intuitively,
a forward adversary is an adversary that observes communication between tags
and readers and later on acquires one of these tags and tries to link it with some
of the past sessions, compromising its privacy. If the adversary succeeds to do
so, with non-negligible probability, we say that is a winning adversary. A weak

adversary is an adversary that is unable to corrupt tags. In real life scenarios it
is often realistic to assume that an adversary can see the outcome of an authen-
tication attempt. For instance, this is the case of transport ticketing systems
where an adversary could observe whether the gate of the metro opens or not,
for a specific tag. An adversary that is unable to do so is called narrow.

We introduce the notion of reader-destructive adversary which is a forward
adversary, additionally empowered with a DestroyReader oracle.

Definition 3.3 (Types of adversaries). An adversary who has access to all ora-
cles O is called forward. Note that A1 is allowed to perform CorruptTag queries
on T ?

b . An adversary is called weak if it does not perform any CorruptTag query.



An adversary is called narrow if it does not perform any Result query. An adver-
sary is called reader-destructive if it additionally has access to a DestroyReader

oracle.

Remark 3.4. Note that this notion of forward adversary is stronger than the
one proposed by Vaudenay and closer to the notion of Juels and Weis.

Definition 3.5 (Privacy). Let C be a class of adversaries in {forward,weak,
narrow}. An RFID scheme is said to be C-private if for all probabilistic polyno-
mial-time adversaries A = (A0,A1) ∈ C

P[Priv-GameΠ,A(η)] − 1/2

is a negligible function of η.

Next, we want to generalize this privacy definition to the off-line setting,
where readers can be subdued. A first attempt would be to take Definition 3.5
and additionally empower the adversary with a DestroyReader oracle. Unfortu-
nately, the resulting definition is not achievable since the following adversary
wins the privacy game with probability one, regardless of the particular scheme.

AO+

0 (pk):
CreateReader(R)
CreateTag(T ?

0 )
CreateTag(T ?

1 )
Sync()
s← DestroyReader(R)
id← Execute(s, T ?

0 )
return T ?

0 , T ?
1

AO+

1 (T ?
b ) :

if id = Execute(s, T ?
b ) then return 0

else return 1

where Execute(s, T ) runs the authentication protocol with tag T using s as the
internal state of the reader.

A setup with off-line readers is inherently insecure during the time-period
where reader destruction takes place. The following definition captures the notion
of self-stabilizing forward privacy with respect to reader destruction. Intuitively,
is the same definition as before. However, before reader destruction takes place,
we must guarantee that readers and tags have the same notion of time. This is
achieved by having the tags communicate with a legitimate reader followed by
a Sync, without the adversary interfering. This means that once the time moves
forward, the privacy of past sessions is ensured, even if the adversary retrieves
the internal state of a reader, see Figure 3.



Definition 3.6 (Self-stabilizing forward privacy game).

SS-Fwd-Priv-GameΠ,A(η) :
(sk, pk)← SetupSystem(1η)
T ?
0 , T

?
1 ← A

O
0 (pk)

b← {0, 1}
R?

0,R
?
1 ← A

O
1 (T

?
b )

Execute(R?
0, T

?
0 )

Execute(R?
1, T

?
1 )

Sync()

b′ ← AO+

2 (T ?
b )

winif if b = b′.

where Execute(R, T ) runs the authentication protocol between the reader R and
the tag T . The challenge tags T ?

0 and T ?
1 must be uncorrupted, which means that

no CorruptTag(T ?
{0,1}) query has been made. Adversaries implicitly pass state.
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Fig. 3. Self-stabilizing Forward Privacy

Definition 3.7 (Self-stabilizing forward privacy). Let C be a class of adversaries
in {forward, weak, narrow, reader-destructive}. An RFID scheme is said to be C-

forward private w.r.t. tag corruption and reader destruction if for all probabilistic
polynomial-time adversaries A = (A0,A1,A2) ∈ C

P[SS-Fwd-Priv-GameΠ,A(η)]− 1/2

is a negligible function of η.

Theorem 3.8. Let Π be a self-stabilizing forward private RFID system. Then,

Π is private with respect to Definition 3.5.

Proof. By inspection. Note that the games are the same up to the Execute call.
The new adversary just has extra power, namely, the distinguishing capability of
AO+

2 , i.e., a winning adversary against Priv-Game is also a winning adversary
against SS-Fwd-Priv-Game, whereA2 just outputs the bit b chosen byA1.

Next we introduce the notion of backward privacy with respect to reader
destruction. Backward privacy is the time-transposed analogy of forward privacy,
see Figure 4. Therefore, the same limitations on privacy during the time-period
where reader destruction takes place still apply. Moreover, since tags lack a
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Fig. 4. Self-stabilizing Backward Privacy

timing device, the lapse extends beyond the compromised time slot. From the
tag’s perspective it is impossible to know that time has passed and therefore
when an attacker interacts first with the tag during a later time slot, the tag is
in an inherently insecure situation. In such a situation, the best one can hope
for is that the tag gets back to a secure state (it self-stabilizes) after interacting
with a legitimate reader. The following security definition captures this notion.

Definition 3.9 (Self-stabilizing backward privacy game).

SS-Back-Priv-GameΠ,A(η) :
(sk, pk)← SetupSystem(1η)

T ?
0 , T ?

1 ← A
O+

0 (pk)
Sync()
R? ← AO

1 ()
b← {0, 1}
Execute(R?, T ?

b )
b′ ← AO

2 (T
?
b )

winif if b = b′.

The challenge tags (T ?
0 and T ?

1 ) must be uncorrupted, i.e., no CorruptTag(T ?
{0,1})

query has been made. Adversaries implicitly pass state.

Definition 3.10 (Self-stabilizing backward privacy). Let C be a class of adver-
saries in {forward, weak, narrow, reader-destructive}. An RFID scheme is said to
be C-self-stabilizing backward private w.r.t. tag corruption and reader destruc-
tion if for all probabilistic polynomial-time adversaries A = (A0,A1,A2) ∈ C

P[SS-Back-Priv-GameΠ,A(η)] − 1/2

is a negligible function of η.

4 Protocol Description

In this section we first recall a slightly modified version of the OSK proto-
col [OSK03] and prove it narrow-forward private in the random oracle model,
as a proof-of-concept. Then, we propose two new protocols that achieve self-
stabilizing forward and backward privacy. Both security proves are in the random
oracle model.



4.1 The OSK protocol

The modified version of the OSK protocol is depicted in Figure 5. The protocol
uses two hash functions f and g. The state of the tag consists of a symmetric
key k that gets hashed with every authentication attempt. The reader has a
table T consisting of pairs of tag identities id and keys k. When the reader gets
an answer c to a challenge n, it will search in T for any matching key, and will
literately hash the keys when no match is found.

T R
state: k state: T = [id, k]

0 n← {0, 1}l

1 n
←−−−−−−−−−−−−

2 c← h(k, n)
3 k ← g(k)
4 c

−−−−−−−−−−−−→
5 ∃(id, k) ∈ T, i < t : h(gi(k), n) = c

6 then k ← gi(k); return T
7 else return ⊥

Fig. 5. Slightly modified version of the OSK protocol

Theorem 4.1. The modified version of the OSK protocol depicted in Fig. 5 is

narrow-forward private in the random oracle model.

Proof. Suppose that there is an adversary A = (A0,A1) that wins the Priv-

Game with non-negligible probability. Then we build the following simulator
S. S initializes the system and then runs the adversary A0 simulating all oracle
calls. The random oracles H and G are simulated as usual by having a tables
TH and TG storing previous queries and answers. Eventually A0 finishes and
outputs tags (T ?

0 , T
?
1 ). Let k0, k1 be respectively the secret keys of T ?

0 and T ?
1

just before the last authentication. As in the game, S will draw a random bit b.
Next, S runs AO

1 (T
?
b ) which eventually outputs a guess bit b′. By hypothesis we

get that b′ = b with probability significantly higher than 1/2. Now T rewinds the
adversary A0 until it performs the first call to the random oracle G on input k0
or k1. Then it runs AO

1 (T
?
1−b) and swaps in TG all occurrences of k0 and k1. By

hypothesis we get that A1 outputs b′ = 1−b with probability significantly higher
than 1/2. Since A1 is narrow, its view is exactly the same as in the previous run,
which leads to a contradiction.

4.2 A self-stabilizing private protocol

Figure 6 depicts our protocol for self-stabilizing forward and backward privacy.
The core of the protocol is the OSK protocol plus some modifications for back-
ward privacy. The state of the tag consists of two keys k and k′. Intuitively, the
former key is used for communication with the readers and the latter is used for
(indirect) communication with the back office. The state of the reader includes



a table T consisting of a tag identity id; the last-known key k; the fist-key-of-
the-day k̃; a MAC h(k′, C0) and a bit u that tells whether or not the tag has
authenticated during the current time period. The MAC constitutes a proof of
knowledge of k′ and C0 is a system-wide constant.

T R

state: k, k′ state: T = [id, k, k̃, h(k′, C0), u]

0 n← {0, 1}l

1 n
←−−−−−−−−−−−−

2 c← h(k, n)
3 k ← h(k)
4 c

−−−−−−−−−−−−→
5 ∃ k ∈ T, i ≤ N : h(hi(k), n) = c

6 then m← h(hi+1(k), h(k′, C0))
7 u← 1

8 ∃ k̃ ∈ T, i ≤ N : h(hi(k̃), n) = c

9 then m← {0, 1}l

10 k̃ ← hi+1(k̃)

11 otherwise m← {0, 1}l

12 m
←−−−−−−−−−−−−

13 if h(k, h(k′, C0)) = m

14 then k ← h(k′ + 1)
15 k′ ← h(k′)

Fig. 6. Self-stabilizing Forward and Backward Private Protocol.

The Sync() protocol gathers the tables TR from each readerR. Then it computes,
for each tag, the latest key k used. If there is a table TR for which u = 1 then
it sets u ← 0, k̃ ← h(k′ + 1) and it updates k′ in the back office by computing
k′ ← h(k′). Finally, it distributes the updated tables to all readers.

Theorem 4.2. The protocol depicted in Fig. 6 is narrow self-stabilizing forward

private in the random oracle model.

Proof. Suppose that there is an adversary A = (A0,A1, A2) that wins the SS-

Fwd-Priv-Game with non-negligible probability. We build the following simu-
lator S. S first creates system parameters by calling (sk, pk)← SetupSystem(1η).
Then, it proceeds as in the SS-Fwd-Priv-Game, invoking A when specified.
Again, the random oracle H is simulated by having a table TH storing previ-
ous query-answer pairs. At some point A0 outputs challenge tags T ?

0 and T ?
1 .

Let t†0 and t†1 be respectively the time when T ?
0 and T ?

1 initiated the last suc-

cessful authentication, see Figure 7. Define k†i , k
′†
i as the secret keys of T ?

i at

time t†i , for i = 0, 1. Let t‡i be the time of the last Sync call before t†i and let

k‡i , k
′‡
i be the secret keys of T ?

i at time t‡i , for i = 0, 1. Next S will rewind

the adversary A0 and resume its execution with a modified random oracle h̃.
h̃ is defined as h, except for the following four points: h̃(k′‡i ) := h(k′‡

1−i) and

h̃(k†i ) := h(k†
1−i) for i = 0, 1. Note that this modification does not affect the



//

time

Sync()

t
‡
0

Sync()

t
‡
1

T ?

0 T
?

1 · · · T
?

1 T ?

0

t
†
0

T ?

1 T
?

1

t
†
1

T ?

b Execute() Sync()

Fig. 7. Timeline of events

view of A0 but with negligible probability. Next, S calls AO
1 (T

?
1−b). Note that

T ?
1−b has exactly the same state that T ?

b had in the previous execution of AO
1 ,

therefore the view of A1 remains unchanged. Finally, S calls Execute(R?
0, T

?
0 ),

Execute(R?
1, T

?
1 ) and Sync() followed by AO+

2 (T ?
1−b). It remains to show that

DestroyReader calls do not change the view of the adversary. This is easy to see
since the internal state of tags and readers at any time are the same, with ex-
ception of h(k‡i ) and h(k′‡i ). For example, the information on the readers about

T ?
i at time max(t‡0, t

‡
1) is idi, k = h(k†i ), k̃ = h(h(k′‡i )+1), h(k′‡i , d̃), 0 in one view,

and id1−i, k = h(k†i ), k̃ = h(h(k′‡i ) + 1), h(k′‡i , d̃), 0 in the other. But this is not
a problem since the adversary never has access to these values, due to the fact
that the Execute and Sync calls destroy this information.

Note that since A is narrow, it does not have access to a Result oracle.
This time, A must output 1−b with probability significantly higher than 1/2

but since its views are indistinguishable, this leads to a contradiction.

Theorem 4.3. The protocol depicted in Fig. 6 is narrow self-stabilizing backward

private in the random oracle model.

Proof. The main idea of the proof is similar to the one of Theorem 4.2. Suppose
that there is an adversaryA = (A0,A1, A2) that wins the SS-Back-Priv-Game

with non-negligible probability. As before, we build the following simulator S.
S first creates system parameters by calling (sk, pk)← SetupSystem(1η). Then,
it proceeds as in the SS-Back-Priv-Game, invoking A when specified. Again,
the random oracle H is simulated by having a table TH storing previous query-
answer pairs. At some point A0 outputs challenge tags T ?

0 and T ?
1 . Let t†i be

the time when T ?
i initiated the last successful authentication, for i = 0, 1, see

Figure 8.
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Sync()

t
‡
0

Sync()

t
‡
1

T ?

0 T
?

1 · · · T
?

1 T ?

0

t
†
0

T ?

1 T
?

1

t
†
1

Sync() T ?

b

Fig. 8. Timeline of events

Let t‡i be the time of the last Sync call before t†i and let k‡i , k
′‡
i be the secret

keys of T ?
i at time t‡i , for i = 0, 1. Next S will rewind the adversary A0 and



resume its execution with a modified random oracle h̃ defined as h except for
the points h̃(k′‡0 ) := h(k′‡1 ) and h̃(k′‡1 ) := h(k′‡0 ). Note that this modification does
not affect the view of A0 but with negligible probability. Next, S calls Sync()
and then AO

1 (), which does not have access to either T ?
0 or T ?

1 . Eventually
A1 outputs a reader R? and then S runs Execute(R?, T ?

1−b). Finally, S calls

AO
2 (T

?
1−b). Note that T ?

1−b has exactly the same state that T ?
b in the previous

execution of A2 and therefore the view of A2 remains unchanged. This time, A
must output 1 − b with probability significantly higher than 1/2 but since its
views are indistinguishable, this leads to a contradiction.

Remark 4.4. This protocol suffers from de-synchronization when reader cor-
ruption has taken place.An adversary can use the data from a corrupted reader
to move forward the key k′ both in a tag or in the back office. Throughout this
paper we focus on privacy and the purpose of this protocol is to show achiev-
ability of our privacy notions. In this protocol there is still a trade-off possible
between de-synchronization resistance and privacy. The reader could addition-
ally store the keys k̃ from adjacent time-slots. This, of course, extends the unsafe
window from one to three time slots but it allows re-synchronization.

T R

state: k, k′ state: T = [id, k, k̃, h(k′, C0), u]

0 n← {0, 1}l

1 n
←−−−−−−−−

2 c← h(k, n)
3 k ← h(k)
4 c

−−−−−−−−→
5 ∃ k ∈ T, i ≤ N : h(hi(k), n) = c

6 then m← h(hi+1(k), h(k′, C0))
7 flag← true

8 ∃ k̃ ∈ T, i ≤ N : h(hi(k̃), n) = c

9 then m← {0, 1}l

10 k̃ ← hi+1(k̃)

11 otherwise m← {0, 1}l

12 m
←−−−−−−−−

13 if h(k, h(k′, C0)) = m

14 then k ← h(k′ + 1)
15 k′ ← h(k′)

16 c′ ← h(k, n)
17 k ← h(k)
18 c′

−−−−−−−−→
19 if flag and h(k̃, n) = c′

20 then update k′ in BO (u← 1)

Fig. 9. Improved Self-stabilizing Forward and Backward Private Protocol.



T R

state: k, k′ state: T = [id, k, k̃, h(k′, b), t]

0 n← {0, 1}l

1 n
←−−−−−−−−

2 c← h(k, n)
3 k ← h(k)
4 c

−−−−−−−−→
5 ∃ k ∈ T, i ≤ N : h(hi(k), n) = c

6 then m← h(hi+1(k), h(k′, b))
7 output id

8 ∃ k̃ ∈ T, i ≤ N : h(hi(k̃), n) = c

9 then m← {0, 1}l

10 output id

11 otherwise m← {0, 1}l

12 output ⊥

13 m
←−−−−−−−−

14 if h(k, h(k′, b)) = m

15 then k ← h(k′, b+ 2)
16 k′ ← h(k′)

17 t← h(k′, k, 4)
18 t

−−−−−−−−→
19 store t for the BO

On the time slots where reader destruction has taken place, the back
office does not update any key. The BO sets b to 1 when reader corruption
is detected

Fig. 10. Improved Self-stabilizing Forward and Backward Private Protocol.

4.3 Improving synchronization

Figure 9 depicts an improved version of the protocol from Section 4.2. By adding
a second authentication it is possible to address the de-synchronization issue
exposed in Remark 4.4. This allows the reader to verify whether or not the key
update has been successful and only report successful key updates to the back
office. Unfortunately this protocol is still vulnerable to de-synchronization when
reader corruption takes place. Figure 10 shows a protocol that prevents this by
storing witnesses of each authentication for later analysis at the back office.

Theorem 4.5. The protocol depicted in Fig. 10 is narrow self-stabilizing forward

and backward private in the random oracle model.

Proof. The proof closely follows the lines of the ones of Theorems 4.2 and 4.3.
Note that authenticating twice does not compromise privacy, otherwise that
would be a valid attack against the protocol from Section 4.2, contradicting
Theorem 4.2 or 4.3.



5 Conclusions

We have proposed a new model for RFID privacy that considers off-line systems
and the potential threat of reader subversion. We have elaborated on the pri-
vacy notions from the literature and adapted the standard notions of forward
and backward security to this setting. We have shown that the straightforward
generalization is unachievable. We have proposed the notions of self-stabilizing
forward and backward privacy, which are the strongest one can expect to attain.

We have designed two authentication protocols that achieve self-stabilizing
forward and backward privacy. We have proven the security of these protocols
in the random oracle model. This protocols use only a hash function as a cryp-
tographic primitive, which makes it suitable to be implemented using some of
the many lightweight functions proposed in the literature [Sha08,PHER07].
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