
Wirelessly Lockpicking a Smart Card Reader

Flavio D. Garcia, Gerhard de Koning Gans , and Roel Verdult

School of Computer Science Institute for Computing and Information Sciences
University of Birmingham, UK Radboud University Nijmegen, The Netherlands.
f.garcia@bham.ac.uk {gkoningg,rverdult}@cs.ru.nl

Abstract
With more than 300 million cards sold, HID iClass is one

of the most popular contactless smart cards on the market. It

is widely used for access control, secure login and payment

systems. The card uses 64-bit keys to provide authenticity

and integrity. The cipher and key diversification algorithms

used in iClass are proprietary and little information about

them is publicly available. In this paper we have reverse

engineered all security mechanisms in the card including

cipher, authentication protocol and also key diversification

algorithms, which we publish in full detail. Furthermore, we

have found six critical weaknesses that we exploit in two

attacks, one against iClass Standard and one against iClass

Elite (a.k.a., iClass High Security). In order to recover a

secret card key, the first attack requires one authentication

attempt with a legitimate reader and 222 queries to a card.

This attack has a computational complexity of 240 MAC

computations. The whole attack can be executed within a

day on ordinary hardware. Remarkably, the second attack

which is against iClass Elite is significantly faster. It directly

recovers the system wide master key from only 15 authenti-

cation attempts with a legitimate reader. The computational

complexity of this attack is lower than 225 MAC computa-

tions, which means that it can be fully executed within 5

seconds on an ordinary laptop.

1. Introduction

iClass is an ISO/IEC 15693 [ISO00], [ISO06], [ISO09]

compatible contactless smart card manufactured by HID

Global. It was introduced in the market back in 2002 as

a secure replacement of the HID Prox card which did

not have any cryptographic capabilities. The iClass cards

are widely used in access control of secured buildings

such as The Bank of America Merrill Lynch, the Inter-

national Airport of Mexico City and the United States

Navy base of Pearl Harbor [Cum06] among many others

(see http://hidglobal.com/mediacenter.php?cat2=2). Other ap-

plications include secure user authentication such as in the

naviGO system included in Dell’s Latitude and Precision

laptops; e-payment like in the FreedomPay and SmartCentric

systems; and billing of electric vehicle charging such as in

the Liberty PlugIns system. iClass has also been incorporated

into the new BlackBerry phones which support Near Field

Communication (NFC). iClass uses a proprietary cipher to

provide data integrity and mutual authentication between

card and reader. The cipher uses a 64-bit diversified key

which is derived from a 56-bit master key and the serial

number of the card. This key diversification algorithm is built

into all iClass readers. The technology used in the card is

covered by US Patent 6058481 and EP 0890157. The precise

description of both the cipher and the key diversification

algorithms are kept secret by the manufacturer following the

principles of security by obscurity. HID distinguishes two

system configurations for iClass, namely iClass Standard and

iClass Elite. The main differences between iClass Standard

and iClass Elite lies in their key management and key

diversification algorithms. Remarkably, all iClass Standard

cards worldwide share the same master key for the iClass

application. This master key is stored in the EEPROM

memory of every iClass reader. Our analysis uncovers this

key. In iClass Elite, however, it is possible to let HID generate

and manage a custom key for your system if you are willing

to pay a higher price. The iClass Elite Program (a.k.a., High

Security) uses an additional key diversification algorithm (on

top of the iClass Standard key diversification) and a custom

master key per system which according to HID provides “the

highest level of security” [HID09].

2. Research context and related work

Over the last few years, much attention has been

paid to the (in)security of the cryptographic mecha-

nisms used in contactless smart cards [GdKGM+08],

[GvRVWS10], [PN12], [VGB12]. Experience has shown

that the secrecy of proprietary ciphers does not con-

tribute to their cryptographic strength. Most notably the

http://hidglobal.com/mediacenter.php?cat2=2

Mifare Classic, which has been thoroughly broken in

the last few years [NESP08], [dKGHG08], [GdKGM+08],

[GvRVWS09], [Cou09]. Other prominent examples include

KeeLoq [Bog07], [KKMP09], Megamos [VGE13] and

Hitag2 [COQ09], [SNC09], [vN11], [SHXZ11], [VGB12]

used in car keys, CryptoRF [GvRVWS10], [BKZ11],

[BGV+12] used in access control and payment systems and

the A5/1 [Gol97], DECT [LST+09] and GMR [DHW+12]

ciphers used in cordless/GSM phones. HID proposes iClass

as a migration option for systems using Mifare Classic, boost-

ing that iClass provides “improved security, performance and

data integrity”1. The details of the security mechanisms of

iClass remained secret for almost one decade.

During the course of our research Kim, Jung, Lee, Jung

and Han have made a technical report [KJL+11] available

online describing independent reverse engineering of the

cipher used in iClass. Their research takes a very different,

hardware oriented approach. They recovered most of the

cipher by slicing the chip and analyzing the circuits with

a microscope. Our approach, however, is radically different

as our reverse engineering is based on the disassembly of

the reader’s firmware and the study of the communication

behavior of tags and readers. Furthermore, the description of

the cipher by Kim et al. contains a major flaw. Concretely,

their key byte selection function in the cipher is different

from the one used in iClass which results in incompatible

keys. Kim et al. have proposed two key recovery attacks.

The first one is theoretical, in the sense that it assumes that

an adversary has access to a MAC oracle over messages

of arbitrary length. This assumption is unrealistic since

neither the card nor the reader provide access to such a

powerful oracle. Their second attack requires full control

over a legitimate reader in order to issue arbitrary commands.

Besides this assumption, it requires 242 online authentication

queries which, in practice, would take more than 710 years

to gather. Our attacks, however, are practical in the sense that

they can be executed within a day and require only wireless

communication with a genuine iClass card/reader.

2.1. Research contribution

The contribution of this paper consists of several parts.

First it describes the reverse engineering of the built-in

key diversification algorithm of iClass Standard. The basic

diversification algorithm, which also forms the basis for

iClass Elite key diversification, consists of two parts: a cipher

that is used to encrypt the identity of the card; and a key

fortification function, called hash0 in HID documentation,

which is intended to add extra protection to the master key.

We show that the key fortification function hash0 is

actually not one-way nor collision resistant and therefore

it adds little protection to the master key. To demonstrate

1. http://www.hidglobal.com/pr.php?id=393

this, we give the inverse function hash0−1 that on input of

a 64 bit bitstring outputs a modest amount (on average 4)

of candidate pre-images. This results in our first attack on

the iClass Standard key diversification that recovers a master

key from an iClass reader which is of comparable complexity

to that of breaking single DES. It only uses weaknesses in

the key diversification algorithm. Since in the end it comes

down to breaking DES, it can be accomplished within a few

days on a RIVYERA (a generic massively parallel FPGA-

computer, see http://www.sciengines.com). This is extremely

sensitive since there is only one master key for all iClass

Standard readers and from this master key all diversified card

keys can be computed. As a faster alternative, it is possible

to emulate a predefined card identity and use a DES rainbow

table [Hel80], [Oec03] based on this identity to perform the

attack. This allows an adversary to recover the master key

even within minutes.

Furthermore, we have fully reverse engineered iClass’s

proprietary cipher and authentication protocol. This task

of reverse engineering is not trivial since it was first nec-

essary to bypass the read protection mechanisms of the

microcontroller used in the readers in order to retrieve its

firmware [GdKGVM12]. This process is explained later

in Section 5. We also found serious vulnerabilities in the

cipher that enable an adversary to recover the secret card

key by just wirelessly communicating with the card. The

potential impact of this second and improved attack against

iClass Standard is vast since when it is combined with the

vulnerabilities in the key diversification algorithm, which we

exploited earlier, it allows an adversary to use this secret

key to recover the master key. Additionally, we have reverse

engineered the iClass Elite key diversification algorithm

which we also describe in full detail. We show that this

algorithm has even more serious vulnerabilities than the

iClass Standard key diversification. In our third and last

attack, an adversary is able to directly recover an “Elite”

master key by simply communicating with a legitimate iClass

reader.

Concretely, we propose three key recovery attacks: one

on the iClass Standard key diversification, one against iClass

Standard and one against iClass Elite. All attacks allow an

adversary to recover the master key.

• The first attack, against iClass Standard key diversi-

fication, exploits the fact that the key diversification

algorithm can be inverted. An adversary needs to let

the genuine reader issue a key update command. The

card key will be updated and from the eavesdropped

communication the adversary learns the card key. The

adversary proceeds by inverting the key diversification

which results in a modest amount of pre-images. Now,

only a bruteforce attack on single DES will reveal which

master key was used.
• The second attack, against iClass Standard, exploits a

total of four weaknesses in the cipher, key diversifi-

http://www.hidglobal.com/pr.php?id=393
http://www.sciengines.com

cation algorithm and card implementation. In order to

execute this attack the adversary first needs to eavesdrop

one legitimate authentication session between the card

and reader. Then it runs 219 key updates and 222

authentication attempts with the card. This takes less

than six hours to accomplish (when using a Proxmark III

as a reader) and recovers 24 bits of the card key. Finally,

off-line, the adversary needs to search for the remaining

40 bits of the key. Having recovered the card key, the

adversary gains full control over the card. Furthermore,

computing the master key from the card key is as hard

as breaking single DES and is done like in the first

attack.
• The third attack, concerning iClass Elite, exploits two

weaknesses in the key diversification algorithm and

recovers the master key directly. In order to run this

attack the adversary only needs to run 15 authentication

attempts with a legitimate reader. Afterwards, off-line,

the adversary needs to compute only 225 DES encryp-

tions in order to recover the master key. This attack,

from beginning to end runs within 5 seconds on ordinary

hardware.

We have executed all attacks in practice and verified these

claims and attack times. These results, previously appeared

in abbreviated form as [GdKGV11], [GdKGVM12].

2.2. Outline

This paper is organized as follows. Section 3 starts with a

description of the iClass architecture, the functionality of the

card, the cryptographic algorithms. Then, Section 4 describes

the reverse engineering of the key diversification scheme that

is used in iClass Standard. Here, we also give an attack

against this iClass Standard key diversification that recovers

the master key from a diversified key. This attack method

forms the basis for the second attack against iClass Standard

where it is used to recover the master key in its last step.

The second attack itself is described in Section 6 after the

reverse engineering and description of the cipher in Section 5.

Finally, Section 7 describes the key diversification in iClass

Elite and presents an attack against this scheme.

3. iClass

An HID iClass card is in fact a pre-configured and re-

branded PicoPass card manufactured by Inside Secure2. HID

configures and locks the cards so that the configuration

settings can no longer be modified. This section describes

in detail the functionality and security mechanisms of iClass

and it also describes the reverse engineering process. Let us

first introduce notation.

Notation: Throughout this article ε denotes the empty bit-

string. ⊕ denotes the bitwise exclusive or. ⊞ denotes addition

2. http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass

modulo 256. a← b denotes the assignment of a value b

to variable a. Given two bitstrings x and y, xy denotes

their concatenation. Sometimes we write this concatenation

explicitly with x · y to improve readability. x denotes the

bitwise complement of x. 0n denotes a bitstring of n zero-bits.

Similarly, 1n denotes a bitstring of n one-bits. Furthermore,

given a bitstring x∈ (Fk
2)

l , we denote with x[i] the i-th element

y ∈ F
k
2 of x. We write yi to denote the i-th bit of y. For

example, given the bitstring x = 0x010203 ∈ (F8
2)

3 and

y← x[2] then y = 0x03 and y6 = 1.

Remark 3.1 (Byte representation): Throughout this paper,

bytes are represented with their most significant bit on

the left. However, the least significant bit is transmitted

first over the air during wireless communication (compliant

with ISO/IEC 15693). This is the same order in which

the bits are input to the cryptographic functions. In other

words, 0x0a0b0c is transmitted and processed as input

0x50d030.

3.1. Functionality

iClass cards come in two versions called 2KS and 16KS with

respectively 256 and 4096 bytes of memory. The memory of

the card is divided into blocks of eight bytes as shown in

Figure 1. Memory blocks 0, 1, 2 and 5 are publicly readable.

They contain the card identifier id, configuration bits, the

card challenge cC and issuer information. Block 3 and 4

contain two diversified cryptographic keys k1 and k2 which

are derived from two different master keys K 1 and K 2.

These master keys are referred to in the documentation as

debit key and credit key. The card only stores the diversified

keys k1 and k2. The remaining memory blocks are divided

into two areas, which are represented by the host software

as applications. The size of these applications is defined by

the configuration block.

The first application of an iClass card is the HID appli-

cation which stores the card identifier, PIN code, password

and other information used in access control systems. Read

and write access to the HID application requires a valid

mutual authentication using the cipher to prove knowledge

of k1. The master key of the HID application is a global

key known to all iClass Standard compatible readers. The

globally used key K 1 is kept secret by HID Global and is

not shared with any customer or industrial partner. Recovery

of this key undermines the security of all systems using

iClass Standard. Two methods have been proposed [Mer10],

[GdKGV11] to recover this key. To circumvent the obvious

limitations of having only a global master key, iClass Elite

uses a different key diversification algorithm that allows

having custom master keys. The details regarding iClass Elite

can be found in Section 7.1. The second global master key

K 2 is used in both iClass Standard and Elite systems and

it is available to any developer who signs a non-disclosure

agreement with HID global. It is possible to extract this key

http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass

Block Content Description

0 Card serial number Identifier id

1 Configuration

2 e-Purse Card challenge cC

3 Key for application 1 Diversified debit key k1

4 Key for application 2 Diversified credit key k2

5 Application issuer area

6. . . 18 Application 1 HID application

19. . . n Application 2 User defined memory

publicly readable

write-only after authentication

read-write after authentication

Figure 1: Memory layout of an iClass card

from publicly available software binaries [GdKGV11]. In

addition, the document [HID06] contains this master key and

is available online. This key K 2 can be used by developers

to protect the second application, although in practice, K 2

is hardly ever used or modified.

The card provides basic memory operations like read and

write. These operations have some non-standard behavior and

therefore we describe them in detail.

• The read command takes as input an application

number a and a memory block number n and returns

the memory content of this block. This command has

the side effect of selecting the corresponding key (k1

for application 1 or k2 for application 2) in the cipher

and then it feeds the content of block n into the internal

state of the cipher. Cryptographic keys are not readable.

When the block number n corresponds to the address

where a cryptographic key is stored, then read returns

a bitstring of 64 ones.
• The write command takes as input a block number

n, an eight-byte payload p and a MAC of the payload

MAC(k,n · p), where k is a diversified card key. When

successful, it writes p in memory and it returns a copy

of p for verification purposes. This command has the

side effect of resetting the internal state of the cipher.

In addition, when the block number n corresponds to

the address where a cryptographic key k is stored, the

payload is XOR-ed to the previous value instead of

overwriting it, i.e., it assigns k← k⊕ p.

Therefore, in order to update a key k to k′, the reader must

issue a write command with k⊕ k′ as payload. In this way

the card will store k ⊕ k ⊕ k′ = k′ as the new key. On the

one hand, this particular key update procedure has the special

feature that in case an adversary eavesdrops a key update he

is unable to learn the newly assigned key, provided that he

does not know k. On the other hand this introduces a new

weakness which we describe in Section 6.2.

Before being able to execute read or write commands

on the protected memory of a card, the reader needs to

get access to the corresponding application by running a

successful authentication protocol described in Section 3.2.

Cryptographic keys k1 and k2 can be seen as part of

application 1 and 2, respectively. This means that in order

to modify a key e.g., k1, the reader first needs to run a

successful authentication with k1.

3.2. Authentication protocol

This section describes the authentication protocol between

an iClass card and reader. This protocol is depicted in Fig-

ure 3 and an example trace is shown in Figure 2. First, during

the anti-collision protocol, the reader learns the identity of

the card id. Then, the reader chooses an application and

issues a read command on the card challenge cC.

This cC is called ‘e-purse’ in the iClass documenta-

tion [IC04] and it is a special memory block in the sense

that it is intended to provide freshness. In the next step, the

reader issues an authenticate command. This command

sends to the card a reader nonce nR and a MAC of the card

challenge cC concatenated with nR. This MAC is computed

using a diversified card key k. Finally, the card answers with

a MAC of cC, nR followed by 32 zero bits. For more details

over the MAC function see Section 5.2.

After a successful authentication on cC the reader is granted

read and write access within the selected application.

Remark 3.2: Since the card lacks a pseudo-random number

generator, the reader should decrement cC after a successful

authentication in order to provide freshness for the next

authentication, see Figure 2. This is not enforced by the card.

Note that cC is treated differently in the sense that when the

tag stores cC it swaps the first and last 32 bits (for reasons that

are unknown to us). Therefore 0xFDFFFFFFFFFFFFFF is

stored by the tag as 0xFFFFFFFFFDFFFFFF as shown in

Figure 2.

4. iClass Standard

In this paper we first reverse engineer the iClass Standard

key diversification. Then, we describe its weaknesses in

Section 4.3. Finally, we describe the first attack against iClass

Standard in Section 4.4.

Our first approach for reverse engineering is in line with

that of [GdKGM+08], [LST+09], [GvRVWS10] and consists

Sender Hex Abstract

Reader 0C 00 73 33 Read identifier

Tag 47 47 6C 00 F7 FF 12 E0 Card serial number id

Reader 0C 01 FA 22 Read configuration

Tag 12 FF FF FF E9 1F FF 3C iClass 16KS configuration

Reader 88 02 Read cC and select k1

Tag FE FF FF FF FF FF FF FF Card challenge cC

Reader 05 00 00 00 00 1D 49 C9 DA Reader nonce nR = 0,MAC(k1,cC ·nR)

Tag 5A A2 AF 92 Response MAC(k1,cC ·nR ·0
32)

Reader 87 02 FD FF FF FF FF FF FF FF Write on block 02 followed by

CF 3B D4 6A MAC(k1,02 · cC− 1)

Tag FF FF FF FF FD FF FF FF Update successful

Figure 2: Authenticate and decrement card challenge cC using k1 = 0xE033CA419AEE43F9

of analyzing the update card key messages sent by an iClass

compatible reader while we produce small modifications on

the key, just after the DES operation and just before it

is passed to the fortification function hash0. We used an

Omnikey reader that supports iClass. Still, we first had to

bypass the encryption layer of the Omnikey Secure Mode

that is used in its USB communication in order to control

the reader messages [GdKGV11]. We reverse engineered

the Omnikey Secure Mode and wrote a library that is

capable of communicating in Omnikey Secure Mode to any

Omnikey reader. To eavesdrop the contactless interface we

have built a custom firmware for the Proxmark III in order to

intercept ISO/IEC 15693 [ISO09] frames. We have released

the library, firmware and an implementation of hash0 under

the GNU General Public License and they are available at

http://www.proxmark.org.

Reader Card

id, cC

nR,MAC(k, cC · nR)

MAC(k, cC · nR · 0
32)

Figure 3: Authentication protocol

Later in Section 5, we use a different approach for reverse

engineering the cipher and the key diversification for iClass

Elite. In this approach we first recover the firmware from an

iClass reader. Then, by disassembling the firmware we are

able to recover the cipher and key diversification for iClass

Elite. The knowledge about the structure of hash0 which

we describe in this section did help a lot in identifying the

interesting parts of the firmware for reverse engineering.

4.1. Black box reverse engineering

This section describes how hash0 [Cum06] (a.k.a.

h0 [Cum03]) was reverse engineered. The final description

of hash0 is given in Section 4.2. The method used to reverse

engineer hash0 studies the input-output relations of hash0

in order to recover its internal structure. The primary goal

is to learn how a card key k is derived from a master key

K and the card identity id. The general structure of the key

derivation is known. First, the iClass reader encrypts a card

identity id with the master key K , using single DES. The

resulting ciphertext is then input to hash0 which outputs the

diversified key k.

k = hash0(DESenc(K , id))

We define the function flip that takes an input c and flips

a specific bit in c. By flipping a bit we mean taking the

complement of this bit. The definition flip is as follows.

Definition 4.1: Let the function flip : F64
2 ×N → F

64
2 be

defined as

flip(c,m) = c63 . . .cm+1 · cm · cm−1 . . .c0

Since we only learn the XOR difference between two hash0

outputs we define the function diff that we use to express

these XOR differences. The function diff computes the

output difference of two hash0 calls and is defined as follows.

Definition 4.2: Let the function diff : F64
2 ×N→ F

64
2 be

defined as

diff(c,m) = hash0(c)⊕ hash0(flip(c,m))

Now we use this definition of output difference to describe

accumulative output differences of an input set C .

k∨m =
∨

c∈C

diff(c,m), k∧m =
∧

c∈C

diff(c,m)

http://www.proxmark.org

The results are grouped by the position of the flipped bit m.

Then, the OR and AND is computed of all the results in a

group. These cumulative OR and AND values for 64 bits

that were flipped on a few thousand random 64-bit bitstrings

c ∈C are presented in Figure 5 and 6. The output difference

for flipping all possible bits is abbreviated as follows.

k∨ =
63
∧

m=0

k∨m, k∧ =
63
∧

m=0

k∧m

4.1.1. Gathering input-output pairs. In this section we

explain how we gather the input-output pairs for hash0

and calculate the output differences. In our setup we have

complete control over an iClass reader for which we can

set and update the keys that are used. Furthermore, we are

able to emulate iClass cards and learn all communication

between the controlled reader and (emulated) iClass card.

First, we analyze the input-output relations of hash0 on

bit level. This requires complete control over the input c

of hash0 which can be achieved in our test setup. In this

test setup we emulate a card identity id and also know,

or even can change, which master key K is used. The

following steps deliver XOR differences between two hash0

evaluations that differ only one bit in the input:
• generate a large set of random bitstrings c ∈ F

64
2 .

• for each c

– calculate id = DESdec(c,K) and

idm = DESdec(flip(c,m),K) for m = 0 . . .63
– for each m authenticate with id, perform a key update,

the reader requests the card identity again, now use

idm instead of id

Keep the master key K constant during the key updates

described above. This delivers the XOR of two function eval-

uations of the form diff(c,m) = hash0(c) ⊕ hash0(flip(c,m)).
We performed this procedure for 3000 random values c ∈ C .

Experiments show that for this particular function, having

more than 3000 samples does not produce any difference on

the cumulative OR and AND tables. This amount of samples

can be obtained within a couple of days.

4.1.2. Function input partitioning. Figure 5 shows the

accumulated differences for the 48 rightmost output bits at

input c. The results for the remaining 16 leftmost output

bits are shown in Figure 6. These differences reveal that

the input c of hash0 is of the form c = x · y · z[7] . . . z[0] with

x,y ∈ F
8
2 and z[i] ∈ F

6
2. The eight output bytes are defined as

k[0] . . .k[7] and constitute the diversified key k. We noticed

that the first 16 bits of the input exhibit a different behavior

that the rest and therefore decided to split the input in two

parts. The structure of the mask in Figure 5 is computed

with x = y = 08 and z a random bitstring. Whereas in

Figure 6 we flip only bits of x and y. This leads to the

following observations:
• z[0] . . .z[3] affects k[0] . . .k[3] and z[4] . . . z[7] affects

k[4] . . .k[7].

• z[0] . . .z[3] and z[4] . . .z[7] generate a similar structure in

the output but are mutually independent. This suggests

the use of a subfunction that is called twice, once with

input z[0] . . .z[3] and once with input z[4] . . . z[7]. We call

this function check.
• y7−i affects k[i] for i = 0 . . .7. The OR-mask for y

indicates a complement operation on the output while

the AND-mask in Figure 6 shows that k[i]0 is exclusively

affected by y for i = 0 . . .7.
• x defines a permutation. The output is scrambled after

flipping a single bit within x. The AND-mask in Fig-

ure 6 shows that k[i]7 is exclusively affected by x for

i = 0 . . .7.
• flipping bits in z never affects k[i]0 or k[i]7 . This is

inferred from the occurrences of 0x7e (01111110 in

binary representation) in Figure 5.

k[1] k[2] k[3] k[7]k[4] k[6]k[5]k[0]

x y z[7] z[6] z[5] z[4] z[3] z[2] z[1] z[0]

{ { { { { { { {

Figure 4: Schematic representation of the function hash0

bit OR-mask of AND-mask of
↓ differences in output k differences in output k

z[0]



























630x7e7e7e7e00000000 0x0400000000000000

620x7e7e7e7e00000000 0x0400000000000000

610x7a7e7e7e00000000 0x0800000000000000

600x727e7e7e00000000 0x1000000000000000

590x627e7e7e00000000 0x2000000000000000

580x427e7e7e00000000 0x4000000000000000

z[1]







570x007e7e7e00000000 0x0000000000000000

.

520x007e7e7e00000000 0x0000000000000000

z[2]







510x00007e7e00000000 0x0000000000000000

.

460x00007e7e00000000 0x0000000000000000

z[3]







450x0000007e00000000 0x0000000000000000

.

400x0000007e00000000 0x0000000000000000

z[4]



























390x00000000027e7e7e 0x0000000002000000

380x00000000047e7e7e 0x0000000004000000

370x00000000087e7e7e 0x0000000008000000

360x00000000107e7e7e 0x0000000010000000

350x00000000207e7e7e 0x0000000020000000

340x00000000407e7e7e 0x0000000040000000

z[5]







330x00000000007e7e7e 0x0000000000000000

.

280x00000000007e7e7e 0x0000000000000000

z[6]







270x0000000000007e7e 0x0000000000000000

.

220x0000000000007e7e 0x0000000000000000

z[7]







210x000000000000007e 0x0000000000000000

.

160x000000000000007e 0x0000000000000000

Figure 5: OR and AND-mask for flipping bits 16 . . .63 of c

The above observations suggest that we can recover different

parts of the function independently. Figure 4 summarizes

how different parts of the input affect specific parts of the

output. Note that from the last observation we know that

the subfunction check operates on z[i]0 . . .z[i]5 and affects

k[i]1 . . .k[i]6 . Furthermore, it is observed that the leftmost bit of

all output bytes k[i]7 and the permutation of z[i] to k[i]1 . . .k[i]6
is determined by x. Finally, every input bit y7−i is copied to

output bit k[i]0 .

Summarizing, hash0 can be split into three different parts.

The first part is the subfunction check which applies a similar

operation on z[0] . . . z[3] and z[4] . . . z[7]. In the second part a

bitwise complement operation is computed based on bits

from the input byte y. The last part applies a permutation that

is defined by the input byte x. The following sections discuss

the reverse engineering of these identified parts of hash0.

Finally, the complete hash0 definition is given in Section 7.

bit OR-mask of AND-mask of
↓ differences in output k differences in output k

y







































15 0xfc00000000000000 0x8000000000000000

14 0x00fc000000000000 0x0080000000000000

13 0x0000fc0000000000 0x0000800000000000

12 0x000000fc00000000 0x0000008000000000

11 0x00000000fe000000 0x00000000fe000000

10 0x0000000000fe0000 0x0000000000fe0000

9 0x000000000000fe00 0x000000000000fe00

8 0x00000000000000fe 0x00000000000000fe

x







































7 0x7f7f7f7e7e7f7f7f 0x0101010000010101

6 0x00007f7e7f000000 0x0000010001000000

5 0x7f7e7e7e7f000000 0x0100000001000000

4 0x7f7e7e7e7e7f0000 0x0100000000010000

3 0x00007f7e7e7e7f00 0x0000010000000100

2 0x7f7e7f7f7f7f7f00 0x0100010101010100

1 0x7f7e7f7e7e7f7f00 0x0100010000010100

0 0x7f7e7f7e7f7e7f00 0x0100010001000100

Figure 6: OR and AND-mask for flipping bits 0 . . .15 of c

4.1.3. Subfunction check. This section describes the reverse

engineering of the subfunction check which operates on two

times four 6-bit input values z[0] . . . z[3] and z[4] . . . z[7]. In order

to recover this part of the function we keep x = y = 08 and

let z vary over random bitstrings. According to Figure 5

only flipping bits in z (positions 16 to 63 of input c) does

matter for check. We write modified(x) to indicate changes

in x between two different test cases. We make modifications

to the input and see where it affects the output. We start by

looking at the following rules that are deduced from Figure 5.

modified(k[0])→ modified(z[7])∧¬modified(z[0] . . . z[6])
modified(k[4])→ modified(z[3])∧¬modified(z[0] . . . z[2])

∧¬modified(z[4] . . . z[7])

Note that k[4]1 . . .k[4]6 = z[3]. For k[0] it is harder to find a

function since flipping a single bit in z[7] may affect multiple

bits in k[0]. The relation between z[7] and k[0] becomes more

clear when we look at specific input patterns and their

corresponding output difference in Figure 7. The stars in the

input pattern for z[7] denote a bit that can be either 0 or 1

without affecting the output difference of k[0]. Note that, of

course, the input bit that is being flipped can also be either 0

or 1 and is therefore also denoted by a star. We try to capture

the output differences for flipping all possible bits between

two different inputs c. We write z7 when the bit flip is set to

zero and z̆7 when is set to one.

z[7] of c diff(c,63)[0] z[7] of c diff(c,62)[0]
****0* 06 *****0 04

***01* 0e ***0*1 0c

**011* 1e **01*1 1c

0111 3e *011*1 3c

11111* 7c 0111*1 7c

01111* 7e 1111*1 7e

Figure 7: Input-output relations for z[7]↔ k[0]

The difference k∨[0] based on flipping bits in z[7] is:

k∨[0]1 . . .k
∨
[0]6

= (z7 mod 63)+ 1⊕ (z̆7 mod 63)+ 1

from which we deduce that

k[0]1 . . .k[0]6 = (z7 mod 63)+ 1 (1)

The remaining k[1]1 . . .k[1]6 , k[2]1 . . .k[2]6 and k[3]1 . . .k[3]6 can

be found in a similar way by flipping bits in the input and

closely looking at the input-output relations. For more details

on the reverse engineering of this function see [GdKGV11].

The complete definition of the function is given in Sec-

tion 4.2. Eventually, the modulo operations are separated

from the subfunction check and defined in the main function

hash0. Also, the definition in Section 4.2 clarifies why the

subfunction is called check. It checks equalities between the

different components of z and affects the output accordingly.

4.1.4. Complement byte. The second byte of the input c is

the complement byte y. It performs a complement operation

on the output of the function as Figure 6 clearly shows.

Flipping bit y7−i results in the complement of k[i]0 in the

output, for i = 0 . . .7. Note that no other input bit influences

any least significant output bit of the output bytes k[i]0 .

Furthermore, k[i]1 . . .k[i]6 are flipped, however, keep in mind

that we do not involve the action of byte x at this point,

which prevents any permutation of the output.

Finally, every k[i]7 is not affected. It is important to observe

that for k[4] . . .k[7] the OR and AND-mask agree that the left

7 bits are always flipped while for k[0] . . .k[3] this is not true.

To be precise, the bits k[i]6 for i= 0 . . .3 are never flipped. We

found that the output value z[j] that constitutes output byte

k[i] is decremented by one if j ≤ 3 except when y7−i = 0.

4.1.5. Permute byte. Finally, the byte x defines a permu-

tation. Iterating over x while y and z[0] . . .z[7] are constants

shows that x is taken modulo 70. This follows from the fact

that the output values repeat every 70 inputs. The cumulative

bitmasks of the output differences, shown in Figure 6, do

not provide information about the permutation but do show

that k[i]7 is affected. Experiments show that x is an injective

mapping on k[i]7 for i = 0 . . .7. This means that it is possible

to learn x by looking at the least significant output bits k[i]7 .

Furthermore, we conclude that the permutation is inde-

pendent of y and z. This means that a permutation function

permute can be constructed which takes x mod 70 as input

and returns a particular mapping. We could recover this

permutation because the values for k[i]7 , for i= 0 . . .7, directly

relate to a unique mapping of the z input. The hash0 function

can be split up into check and permute subfunctions and is

defined in Section 4.2.

4.2. The function hash0

The following sequence of definitions precisely describe

the recovered function hash0. The details of this construction

are not necessary to understand the attacks presented in

Section 6.5 and Section 7.3.

The function hash0 first computes x′ = x mod 70 which

results in 70 possible permutations. Then for all zi the modu-

lus and additions are computed before calling the subfunction

check.

Then, the subfunction check is called twice, first on input

z′0, . . . ,z
′
3 and then on input z′4, . . . ,z

′
7. The definition of the

function check is as follows.

Definition 4.3: Let the function check : (F6
2)

8→ (F6
2)

8 be

defined as

check(z[0] . . . z[7]) = ck(3,2,z[0] . . . z[3]) · ck(3,2,z[4] . . . z[7])

where ck : N×N× (F6
2)

4→ (F6
2)

4 is defined as

ck(1,−1,z[0] . . .z[3]) = z[0] . . . z[3]

ck(i,−1,z[0] . . . z[3]) = ck(i− 1, i− 2,z[0] . . . z[3])

ck(i, j,z[0] . . .z[3]) =
{

ck(i, j− 1,z[0] . . . z[i]← j . . . z[3]), if z[i] = z[j];

ck(i, j− 1,z[0] . . . z[3]), otherwise.

Definition 4.4: Define the function permute : Fn
2× (F6

2)
8×

N×N→ (F6
2)

8 as

permute(ε,z, l,r) = ε

permute(p0 . . . pn,z, l,r) =
{

(z[l]+ 1) ·permute(p0 . . . pn−1,z, l + 1,r), if pn = 1;

z[r] ·permute(p0 . . . pn−1,z, l,r+ 1), otherwise.

Definition 4.5: Define the bitstring π ∈ (F8
2)

35 in hexadec-

imal notation as

π = 0x0F171B1D1E272B2D2E333539363A3C474B

4D4E535556595A5C636566696A6C71727478

Each byte in this sequence is a permutation of the bitstring

00001111. Note that this list contains only the half of all

possible permutations. The other half can be computed by

taking the bit complement of each element in the list.

Finally, the definition of hash0 is as follows.

Definition 4.6: Let the function hash0 : F8
2×F

8
2× (F6

2)
8→

(F8
2)

8 be defined as hash0(x,y,z[0] . . . z[7]) = k[0] . . .k[7] where

z′[i] = (z[i] mod (63− i))+ i i = 0 . . .3

z′[i+4] = (z[i+4] mod (64− i))+ i i = 0 . . .3

ẑ = check(z′)

p =

{

π[x mod 35], if x7 = 1;

π[x mod 35], otherwise.

z̃ = permute(p, ẑ,0,4)

k[i] =

{

y(7−i) · z̃[i] · p(7−i)+ 1, if y(7−i) = 1;

y(7−i) · z̃[i] · p(7−i), otherwise.

i = 0 . . .7

This concludes the reverse engineering of the key diversifi-

cation algorithm that is used in iClass Standard and defined

as

k = hash0(DESenc(K , id)) .

4.3. Weaknesses in iClass Standard key diversifica-

tion

This section describes weaknesses in the design of the

Omnikey Secure Mode and on the iClass built-in key diver-

sification and fortification algorithms. These weaknesses will

be later exploited in Section 4.4.

4.3.1. Omnikey Secure Mode. Even though encrypting the

communication over USB is in principle a good practice, the

way it is implemented in the Omnikey Secure Mode adds

little security. The shared key kCUW that is used for this

practice is the same for all Omnikey readers. This key is

included in software that is publicly available online, which

only gives a false feeling of security.

4.3.2. Weak key fortification. This section clarifies why

hash0 is not strengthening the diversified key kid at all. First,

note that only the modulo operations in hash0 on x (256
70

)

and z[0], . . . ,z[7] are responsible for collisions in the output.

The expected number of pre-images for an output of hash0

is given by

256

70
×

64

60
×

63

∏
n=61

(

64

n

)2

≈ 4.72

When we want to invert the function hash0 we need to find

the possible inputs that generate one specific output. Once

we find a pre-image, we need to determine if there exist other

values within the input domain that lead to the same output

when the modulus is taken. Note that each input value z[i]
may have a second pre-image that maps to the same output.

Furthermore, every permute byte x has at least two other

values that map to the same output and in some cases there

is even a third one. This means that the minimal number

of pre-images is three. The probability q that for a given

random input c there are only two other pre-images is

24

70
×

60

64
×

63

∏
n=61

(n

64

)2

≈ 0.27

This means that hash0 does not add much additional protec-

tion. For example, imagine an adversary who can learn the

output kid of hash0(DESenc(K , id)) for arbitrary values id.

Then, the probability q′ for an adversary to obtain an output

kid which has only three pre-images is 1− (1− q)n, where

n is the number of function calls using random identities id.

For n = 15 this probability becomes q′ > 0.99.

4.3.3. Inverting hash0. It is relatively easy to compute the

inverse of the function hash0. Let us first compute the inverse

of the function check. Observe that the function check−1 is

defined just as check except for one case where the condition

and assignment are swapped, see Definition 4.7.

Definition 4.7: Let the function check−1 : (F6
2)

8 → (F6
2)

8

be defined as check(z[0] . . . z[7]) in Definition 4.3 except for

the following case where

ck−1(i, j,z[0] . . .z[3]) =
{

ck−1(i, j− 1,z[0] . . . z[i]← z[j] . . . z[3]), if z[i] = j;

ck−1(i, j− 1,z[0] . . . z[3]), otherwise.

Definition 4.8: Define the function permute−1 : F
n
2 ×

(F6
2)

8×N×N→ (F6
2)

8 as

permute−1(p,z, l = 12,r) = ε

permute−1(p,z, l < 4,r) =
{

(z[r]− 1) ·permute−1(p,z, l + 1,r+ 1), if pr = 1;

permute−1(p,z, l,r+ 1), otherwise.

permute−1(p,z, l ≥ 4,r) =
{

z[l−4] ·permute−1(p,z, l + 1,r), if pl−4 = 0;

permute−1(p,z, l + 1,r), otherwise.

Next, we define the function hash0−1, the inverse of hash0.

This function outputs a set C of candidate pre-images. These

pre-images output the same key k when applying hash0. The

definition of hash0−1 is as follows.

Definition 4.9: Let the function hash0−1 : (F8
2)

8→ {F8
2×

F
8
2× (F6

2)
8} be defined as

hash0−1(k[0] . . .k[7]) = C

where

C = {x|x = x′ mod 70} × {y} ×
{z7|z7 = ż7 mod 61} × {z6|z6 = ż6 mod 62} ×
{z5|z5 = ż5 mod 63} × {z4|z4 = ż4 mod 64} ×
{z3|z3 = ż3 mod 60} × {z2|z2 = ż2 mod 61} ×
{z1|z1 = ż1 mod 62} × {z0|z0 = ż0 mod 63}

x′ is unique elem. in F
8
2 s.t.

{

p = π[x′ mod 35]⇔ x′7 = 1

p = π[x′ mod 35]⇔ x′7 = 0

ż[i] = z′[i]− (i mod 4) i = 0 . . .7

z′ = check−1(ẑ)

ẑ = permute−1(p, z̃,0,0)

z̃[i] = k′[i]1 . . .k
′
[i]6

i = 0 . . .7

pi = k′
[i]7

i = 0 . . .7

k′[i] =

{

k[i]− 1, if y(7−i) = 1;

k[i], otherwise.
i = 0 . . .7

yi = k[7−i]0 i = 0 . . .7

4.3.4. Weak key diversification algorithm. The iClass

Standard key diversification algorithm uses a combination of

single DES and the proprietary function called hash0, which

we reverse engineered. Based on our findings in the preced-

ing sections, we conclude that the function hash0 is not one-

way nor collision resistant. In fact, it is possible to compute

the inverse function hash0−1 having a modest amount (on

average 4) of candidate pre-images. After recovering a secret

card key, recovering an iClass master key is not harder than a

chosen plaintext attack on single DES. The use of single DES

encryption for key diversification results in weak protection

of the master key. This is a critical weakness, especially

considering that there is only one master key for the HID

application of all iClass cards. Furthermore, the composition

of single DES with the function hash0 does not strengthen

the secret card key in any way. Even worse, when we look at

the modulo operations that are applied on the z component of

the hash0 function input, we see that this reduces the entropy

of the diversified card key with 2.23 bits.

4.4. Attacking iClass Standard key diversification

From the weaknesses that were explained in the previous

section it can be concluded that hash0 does not significantly

increase the complexity of an attack on the master key K . In

fact, the attack explained in this section requires one brute

force run on DES. For this key recovery attack we need

a strong adversary model where the adversary controls a

genuine reader and is able to issue key update commands.

Section 6.5 introduces an attack that allows a more restricted

adversary. In this case, we use a strong adversary that

controls a genuine reader, like an Omnikey reader in Secure

Mode. The adversary controls this reader and is able to issue

key update commands. An attack consists of two phases and

an adversary A needs to:

Phase 1.

• emulate a random identity id to the reader;

• issue an update key command that updates from a

known user defined master key K ′ to the unknown mas-

ter key K that A wants to recover. Now, A can obtain

kid = hash0(DESenc(K , id)) from the XOR difference;

• compute the set of pre-images C by hash0−1(kid);
• repeats Phase 1 until A obtains an output kid with |C |=

3.

Phase 2.

• A checks for every candidate DES key K ∗ ∈ {0,1}56

if DESenc(K
∗, id) = c, for every c ∈ C ;

• when the check above succeeds, A verifies the corre-

sponding key K ∗ against another set of id and kid .

We have verified this attack on the two master keys K 1 and

K 2 that are stored in the Omnikey reader for the iClass

application. The key K 2 was also stored in the naviGO

software and we could check the key against pre-images

that were selected as described above. Although we did not

find K 1 stored in software we were still able to verify it

since we could dump the EEPROM of a reader where K 1

was stored, see Section 5.1. It would have been possible to

recover hash0 from the EEPROM as well, although the prior

knowledge about hash0 allowed us to identify more quickly

where the remaining cryptographic functions were located in

the EEPROM.

The attack above comes down to a brute force attack on

single DES. A slightly different variant is to keep the card

identity id fixed and use a DES rainbow table [Hel80] that

is constructed for a specific plaintext and runs through all

possible encryptions of this plaintext. Note that the rainbow

table needs to be pre-computed and thus a fixed plaintext

must be chosen on forehand. This means that one fixed

predefined id is to be used in the attack. The number of

pre-images can no longer be controlled. In the worst case,

the total number of pre-images is 512.

Finally, note that we need a strong adversary model in this

attack. The adversary needs to control a genuine reader, by

which we mean that the adversary is able to let the reader

issue card key update commands. In a real-life setup this

is not really feasible. The reverse engineering of the cipher

and authentication protocol of iClass in Section 5 did not

only reveal the iClass security mechanisms, but also more

weaknesses that are described in Section 6. We use some of

these weaknesses to lower the requirements on the adversary

and deploy a second attack on iClass Standard, when the

adversary does not control the reader, in Section 4.4.

5. The iClass cipher

This section first describes the reverse engineering process

employed to recover the iClass cipher and to recover the

iClass Elite key diversification algorithm. Then, we only

describe the reverse engineered iClass cipher. We use this

in Section 6 to mount a second (improved) attack on iClass

Standard. The recovered key diversification for iClass Elite

and its corresponding weaknesses lead to the third attack

which is described in Section 7.

5.1. Firmware reverse engineering

In order to reverse engineer the cipher and the key diversifi-

cation algorithm, we have first recovered the firmware from

an iClass reader. For this we used a technique introduced

in [Mer10] and later used in [GdKGV11]. Next, we will

briefly describe this technique. iClass readers (Fig. 8), as

many other embedded devices, rely on the popular PIC

microcontroller (Fig. 8b) to perform their computations.

(a) iClass reader. (b) iClass reader where the epoxy resin
has been partially removed to expose the
PIC microcontroller.

Figure 8: iClass readers

These microcontrollers are very versatile and can be flashed

with a custom firmware. The (program) memory of the micro-

controller is divided into a number of blocks, each of them

having access control bits determining whether this block is

readable/writable. Even when the PIC is configured to be non-

writable, it is always possible to reset the access control bits

by erasing the memory of the chip. At first glance this feature

does not seem very helpful to our reverse engineering goals

since it erases the data in the memory. Conveniently enough,

even when the most common programming environments

do not allow it, the microcontroller supports erasure of a

single block. After patching the PIC programmer software to

support this feature, it is possible to perform the following

attack to recover the firmware:

• Buy two iClass RW400 (6121AKN0000) readers.

• Erase block 0 on one of the readers. This resets the

access control bits on block 0 to readable, writable.

• Write a small dumper program on block 0 that reads

blocks 1, . . . ,n and outputs the data via one of the

microcontroller’s output pins.

• Use the serial port of a computer to record the data.

This procedure recovers blocks 1, . . . ,n.

• Proceed similarly with the other reader, but erasing

blocks 1, . . . ,n. This in fact fills each block with NOP

operations.

• At the end of block n write a dumper program for block

0.

• At some point the program will jump to an empty block

and then reach the dumper program that outputs the

missing block 0.

Once we have recovered the firmware, it is possible to use

IDA Pro and MPLAB to disassemble, debug and reverse

engineer the algorithms.

5.2. The cipher

This section describes the iClass cipher that we recovered

from the firmware. This cipher is interesting from an aca-

demic and didactic perspective as it combines two important

techniques in the design of stream ciphers from the ’80s

and beginning of the ’90s, i.e., Fibonacci generators and

Linear Feedback Shift Registers (LFSRs). The internal state

of the iClass cipher consists of four registers as can be seen

in Figure 9. Two of these registers, which we call left (l)

and right (r) are part of the Fibonacci generator. The other

two registers constitute linear feedback shift registers top (t)

and bottom (b). In order to understand the description of

the cipher correctly, take into account that the solid lines

in Figure 9 represent byte operations while dotted lines

represent bit operations.

Definition 5.1 (Cipher state): A cipher state of iClass

s is an element of F
40
2 consisting of the following four

components:

• the left register l = (l0 . . . l7) ∈ F
8
2;

• the right register r = (r0 . . . r7) ∈ F
8
2;

• the top register t = (t0 . . . t15) ∈ F
16
2 ;

• the bottom register b = (b0 . . .b7) ∈ F
8
2.

The cipher has an input bit which is used (among others)

during authentication to shift in the card challenge cC and

the reader nonce nR. With every clock tick a cipher state

s evolves to a successor state s′. Both LFSRs shift to

the right and the Fibonacci generator iterates using one

byte of the key (chosen by the select(·) function) and the

bottom LFSR as input. During this iteration each of these

components is updated, receiving additional input from the

other components of the cipher. With each iteration, the

cipher produces one output bit. The following sequence of

definitions describes the cipher in detail; see also Figure 9.

Definition 5.2: The feedback function for the top register

T : F16
2 → F2 is defined by

T (x0x1x15) = x0⊕ x1⊕ x5⊕ x7⊕ x10⊕ x11⊕ x14⊕ x15.

Definition 5.3: The feedback function for the bottom

register B : F8
2→ F2 is defined by

B(x0x1 . . .x7) = x1⊕ x2⊕ x3⊕ x7.

Definition 5.4 (Selection function):

The selection function select : F2×F2×F
8
2 → F

3
2 is de-

fined by

select(x,y,r) = z0z1z2

where

z0 = (r0∧ r2) ⊕ (r1∧ r3) ⊕ (r2∨ r4)

z1 = (r0∨ r2) ⊕ (r5∨ r7) ⊕ r1 ⊕ r6 ⊕ x ⊕ y

z2 = (r3∧ r5) ⊕ (r4∧ r6) ⊕ r7 ⊕ x

Definition 5.5 (Successor state): Let s = 〈l,r, t,b〉 be a

cipher state, k ∈ (F8
2)

8 be a key and y ∈ F2 be an input bit.

Define the successor cipher state s′ = 〈l′,r′, t ′,b′〉 as

t ′← (T (t) ⊕ r0 ⊕ r4)t0 . . . t14

l′← (k[select(T (t),y,r)] ⊕ b′)⊞ l⊞ r

b′← (B(b) ⊕ r7)b0 . . .b6

r′← (k[select(T (t),y,r)] ⊕ b′)⊞ l

We define the successor function suc which takes a key k ∈
(F8

2)
8, a state s and an input y∈ F2 and outputs the successor

state s′. We overload the function suc to multiple bit input

x ∈ F
n
2 which we define as

suc(k,s,ε) = s

suc(k,s,x0 . . .xn) = suc(k,suc(k,s,x0 . . .xn−1),xn)

Definition 5.6 (Output): Define the function output which

takes an internal state s = 〈l,r, t,b〉 and returns the bit r5. We

also define the function output on multiple input bits which

takes a key k, a state s and an input x ∈ F
n
2 as

output(k,s,ε) = ε

output(k,s,x0 . . .xn) = output(s) ·output(k,s′,x1 . . .xn)

where s′ = suc(k,s,x0).

Definition 5.7 (Initial state): Define the function init which

takes as input a key k ∈ (F8
2)

8 and outputs the initial cipher

state s = 〈l,r, t,b〉 where

t ← 0xE012 l← (k[0] ⊕ 0x4C)⊞0xEC

b← 0x4C r← (k[0] ⊕ 0x4C)⊞0x21

Definition 5.8 (MAC function): Define the function

MAC : (F8
2)

8×F
n
2→ F

32
2 as

MAC(k,m) = output(k,suc(k, init(k),m),032)

6. Weakness in iClass

This section describes weaknesses in the design and imple-

mentation of iClass. We present four weaknesses that are

later exploited in Section 6.5 to mount a attack that recovers

the systems master key.

k[0]

k[1]

k[2]

k[3]

k[4]

k[5]

k[6]

k[7]

M
U

X

select(·)

0 1 2 3 4 5 6 7⊞

⊞

⊕ 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

⊕ ⊕ ⊕

⊕

⊕

⊕

output

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

l r

b

t

Figure 9: The iClass cipher

6.1. Weak keys

The cipher has a clear weakness when the three rightmost

bits of each key byte are the same. Let us elaborate on that.

Proposition 6.1: Let β be a bitstring of length three. Then,

for all keys k ∈ F64
2 of the form k = α[0]β . . .α[7]β with α[i] ∈

F
5
2 the cipher outputs a constant Cβ .

This is due to the fact that the output of the cipher is

determined by the three rightmost (least significant) bits of

register r, the three rightmost bits of l and the three rightmost

bits of the selected key byte XOR b. Furthermore, only the

rightmost bit of r influences register b. This means that the

5 leftmost bits of r and the 5 leftmost bits of each key byte

affect only the key byte selection, but for the key under

consideration this does not affect the output. The same holds

for cC and nR as they are just input to the select(·) function.

The following table shows the corresponding MAC value for

each possible value of β .

The manufacturer seems to be aware of this feature of the

cipher since the function hash0, used in key diversification,

prevents such a key from being used. This weakness com-

bined with the weakness described in Section 6.2 and 6.3

results in a vulnerability exploited in Section 6.5.

6.2. XOR key update weakness

In order to update a card key, the iClass reader does not

send the new key to the card in the clear but instead it sends

the XOR of the old and the new key (see Section 3.1). This

simple mechanism prevents an adversary from eavesdropping

the new key during key update. Although, this key update

mechanism introduces a new weakness, namely, it makes it

possible for and adversary to make partial modifications to

the existing key. A key update should be an atomic operation.

Otherwise it allows an adversary to split the search space in

a time-memory trade-off. Moreover, in case the cipher has

some weak keys like the ones described in Section 6.1, it

allows an adversary to force the usage of one of these keys.

6.3. Privilege escalation

Several privilege escalation attacks have been described in

the literature [KSRW04], [DDSW11]. The privilege escala-

tion weakness in iClass concerns the management of access

rights over an application within the card. After a successful

authentication for application 1 has been executed, the reader

is granted read and write access to this application. Then, it

is possible to execute a read command for a block within

application 2 without loosing the previously acquired access

rights. More precisely, a read command on block n within

application 2, with n 6= cC, returns a sequence of 64 ones

which indicates that permission is denied to read this block.

Surprisingly, this read attempt on application 2 does not

affect the previously acquired access rights on application 1.

This read command though, has the side effect of loading

the key k2 into the internal state of the cipher. In particular,

from this moment on the card accepts write commands on

application 1 that have a valid MAC computed using key k2.

6.4. Lower card key entropy

After careful inspection of the function hash0 (Sec-

tion 4.3.2) it becomes clear that this function attempts to

fix the weak key weakness presented in this section.

The function hash0 makes sure that, when looking at the

last bit of each key byte, exactly four of them are zeros (and

the other four of them are ones). Due to this restriction there

are only 8!
(4!)2 = 70 possibilities for the last bits of each key

byte, instead of 28 = 256, reducing the entropy of the key by

1.87 bits. This constitutes the biggest part of the 2.23 bits

entropy loss (Section 4.3.4) that is caused by hash0.

6.5. Key recovery attack on iClass Standard

This section shows how the weaknesses described in Sec-

tion 6 can be exploited. Concretely, we propose an attack

that allows an adversary to recover a card key by wirelessly

communicating with a card and a reader. Once the card key

has been recovered, the weak key diversification weakness

described in Section 4.3 can be exploited in order to recover

the master key. Next, we describe the attack in detail.

In order to recover a target card key k1 from application

1, an adversary A proceeds as follows. First, A eavesdrops

a legitimate authentication trace on the e-purse with key k1,

while making sure that the e-purse is not updated. If the

reader attempts to update the e-purse, this can be prevented

by playing as man-in-the-middle or by simply jamming the

e-purse update message. Next, the adversary replays this

authentication trace to the card. At this point the adversary

gains read and write access to application 1. Although, in

order to actually be able to write, the adversary still needs to

send a valid MAC with k1 of the payload. To circumvent this

problem, the adversary proceeds as described in Section 6.3,

exploiting the privilege escalation weakness. At this point the

adversary still has read and write access to application 1 but

he is now able to issue write commands using MACs gener-

ated with the default key k2 [HID06] to write on application

1. In particular, A is now able to modify k1 at will. Exploiting

the XOR key update weakness described in Section 6.2, the

adversary modifies the card key k1 into a weak key by

setting the three rightmost bits of each key byte the same.

Concretely, the adversary runs 23×7 = 221 key updates on

the card with ∆ = 05δ[0] . . .0
5δ[6]0

8 ∈ F
64
2 and δ[i] = abc∈ F3

2

for all possible bits a,b and c. One of these key updates will

produce a weak key, i.e., a key of the form k =α[0]β . . .α[7]β

with α[i] ∈ F
5
2. Exploiting the weak key weakness described

in Section 6.1, after each key update A runs 8 authentication

attempts, one for each possible value of β , using the MAC

values shown in Figure 10. Note that a failed authentication

will not affect the previously acquired access rights. As soon

as an authentication attempt succeeds, the card responds

with a MAC value that univocally determines β as stated in

Proposition 6.1. Knowing β , the adversary is able to recover

the three rightmost bits of k1[i] by computing β ⊕ δ[i] for

i = 0 . . .6. Furthermore, the three rightmost bits of k[7] are

equal to β ⊕ 000 = β . In this way, the adversary recovers

3× 8 = 24 bits of k1 and only has to search the remaining

40 bits of the key, using the legitimate trace eavesdropped

in the beginning for verification.

This attack can be further optimized. The restriction on

the last bit of each byte imposed by hash0, described at

β Cβ = MAC(k,cC ·nR)

000 BF 5D 67 7F

001 10 ED 6F 11

010 53 35 42 0F

011 AB 47 4D A0

100 F6 CF 43 36

101 59 7F 4B 58

110 1A A7 66 46

111 E2 D5 69 E9

Figure 10: Corresponding MAC for each value of β

the end of Section 6.4, reduces the number of required key

updates from 221 to almost 219. Therefore, it reduces the total

number of authentication attempts to 219× 8 = 222. Once

the adversary has recovered the card key k1, as we already

mention in Section 6.4, recovering the master key is just as

hard as breaking single DES.

7. iClass Elite

This section describes in detail the built-in key diversification

algorithm of iClass Elite. Besides the obvious purpose of

deriving a card key from a master key, this algorithm intends

to circumvent weaknesses in the cipher by preventing the

usage of certain ‘weak’ keys. In this way, it is patching a

weakness in the iClass cipher. After the description of the

iClass Elite key diversification in Section 7.1 we describe the

weaknesses of this scheme in Section 7.2. Finally, the third

and fastest attack of this paper, concerning iClass Elite, is

given in Section 7.3.

First, recall the key diversification of the iClass Standard

system that we described in Section 4.2. In this scheme,

the iClass reader first encrypts the card identity id with the

master key K , using single DES. The resulting ciphertext

is then input to a function called hash0 which outputs

the diversified key k, i.e., k = hash0(DESenc(K , id)). Here

the DES encryption of id with master key K outputs

a cryptogram c of 64 bits. These 64 bits are divided as

c = 〈x,y,z[0], . . . ,z[7]〉 ∈ F
8
2 × F

8
2 × (F6

2)
8 which is used as

input to the hash0 function. This function introduces some

obfuscation by performing a number of permutations, com-

plement and modulo operations. Besides that, it checks for

and removes patterns like similar key bytes, which could

produce a strong bias on the cipher. Finally, the output of

hash0 is the diversified card key k = k[0], . . . ,k[7] ∈ (F8
2)

8.

Remark 7.1: The DES implementation used in iClass is

non-compliant with the NIST standard [FIP99]. Concretely,

iClass deviates from the standard in the way of representing

keys. According to the standard a DES key is of the form

〈k0 . . .k6 p0, . . . ,k47 . . .k55 p7〉 where k0 . . .k55 are the actual

key bits and p0 . . . p7 are parity bits. Instead, in iClass, a

DES key is of the form 〈k0 . . .k55 p0 . . . p7〉.

7.1. Key diversification on iClass Elite

The iClass Elite system is sold as a more secure and advanced

solution than the iClass Standard variant. HID introduces

iClass Elite (a.k.a. High Security) as the solution for “those

who want a boost in security” [Cum03]. iClass Elite aims

to solve the obvious limitations of having just one single

world-wide master key for all iClass systems. Instead, iClass

Elite allows customers to have a personalized master key for

their own system. To this purpose, HID has modified the key

diversification algorithm, described in Section 4.2 by adding

an additional layer to it. This modification only affects the

way in which readers compute the corresponding card key

but does not change anything on the cards themselves. This

section describes this key diversification algorithm in detail.

Then, Section 7.2 describes two weaknesses that are later

exploited in Section 7.3.

We first need to introduce a number of auxiliary functions

and then we explain this algorithm in detail.

Definition 7.1 (Auxiliary functions): Let us define the

following auxiliary functions. The bit-rotate left function

rl : F8
2→ F

8
2 as rl(x0 . . .x7) = x1 . . .x7x0.

The bit-rotate right function

rr : F8
2→ F

8
2 as rr(x0 . . .x7) = x7x0 . . .x6.

The nibble-swap function swap

swap : F8
2→ F

8
2 as swap(x0 . . .x7) = x4 . . .x7x0 . . .x3.

Definition 7.2: Let the function hash1 : (F8
2)

8→ (F8
2)

8 be

defined as

hash1(id[0] . . . id[7]) = k[0] . . .k[7]

where

k[i]=k′[i] mod 128, i = 0 . . .7

k′[0]= id[0]⊕·· ·⊕ id[7] k′[4]= rr(id[4]⊞ k′
[2]
)+ 1

k′[1]= id[0]⊞ . . .⊞ id[7] k′[5]= rl(id[5]⊞ k′
[3]
)+ 1

k′[2]= rr(swap(id[2]⊞ k′[1])) k′[6]= rr(id[6]⊞ (k′[4]⊕3C))

k′[3]= rl(swap(id[3]⊞ k′[0])) k′[7]= rl(id[7]⊞ (k′[5]⊕C3))

Definition 7.3: Define the rotate key function rk : (F8
2)

8×
N→ (F8

2)
8 as

rk(x[0] . . .x[7],0) = x[0] . . .x[7]

rk(x[0] . . .x[7],n+ 1) = rk(rl(x[0]) . . . rl(x[7]),n)

Definition 7.4: Let the function hash2 : (F8
2)

8 → (F64
2)16

be defined as hash2(K cus) = y[0]z[0] . . .y[7]z[7] where

z[0] = DESenc(K
cus,K cus)

z[i] = DESdec(rk(K cus, i),z[i−1]) i = 1 . . .7

y[0] = DESdec(z[0],K cus)

y[i] = DESenc(rk(K cus, i),y[i−1]) i = 1 . . .7

Next we introduce the Selected key. This key is used as

input to the standard iClass key diversification algorithm. It

is computed by taking a selection of bytes from hash2(K cus).
This selection is determined by each byte of hash1(id) seen

as a byte offset within the bitstring hash2(K cus).

Definition 7.5: Let h ∈ (F8
2)

128. Let ksel ∈ (F8
2)

8 be the

Selected key defined as

h← hash2(K cus); ksel
[i] ← h[hash1(id)[i]]

i = 0 . . .7

The last step to compute the diversified card key is just like

in iClass

k← hash0(DESenc(k
sel , id))

7.2. Weaknesses in iClass Elite key diversification

This section describes two weaknesses in the key diver-

sification algorithm of iClass Elite. These weaknesses are

exploited in Section 7.3 to mount an attack against iClass

Elite that recovers the custom master key.

7.2.1. Redundant key diversification on iClass Elite.

Assume that an adversary somehow learns the first 16 bytes

of hash2(K cus), i.e., y[0] and z[0]. Then he can simply recover

the master custom key K cus by computing

K
cus = DESenc(z[0],y[0]) .

Furthermore, the adversary is able to verify that he has the

correct K
cus by checking the following equality

z[0] = DESenc(K
cus,K cus) .

7.2.2. Weak key-byte selection on iClass Elite. Yet an-

other weakness within the key diversification algorithm of

iClass Elite has to do with the way in which bytes from

hash2(K cus) are selected in order to construct the key ksel .

As described in Section 7.1, the selection of key bytes from

hash2(K cus) is determined by hash1(id). This means that

only the card’s identity decides which bytes of hash2(K cus)
are used for ksel . This constitutes a serious weakness since no

secret is used in the selection of key bytes at all. Especially

considering that, for some card identities, the same bytes

of hash2(K cus) are chosen multiple times by hash1(id). In

particular, this implies that some card keys have significantly

lower entropy than others. What is even more worrying, an

adversary can compute by himself which card identities have

this feature.

Card identity id hash1(id) Recovery

00 0B 0F FF F7 FF 12 e0 01 01 00 00 45 01 45 45 Byte 00, 01 in 224

00 04 0E 08 F7 FF 12 e0 78 02 00 00 45 01 45 45 Byte 02 in 216

00 09 0D 05 F7 FF 12 e0 7B 03 00 00 45 01 45 45 Byte 03 in 216

00 0A 0C 06 F7 FF 12 e0 7A 04 00 00 45 01 45 45 Byte 04 in 216

00 0F 0B 03 F7 FF 12 e0 7D 05 00 00 45 01 45 45 Byte 05 in 216

00 08 0A 0C F7 FF 12 e0 74 06 00 00 45 01 45 45 Byte 06 in 216

00 0D 09 09 F7 FF 12 e0 77 07 00 00 45 01 45 45 Byte 07 in 216

00 0E 08 0A F7 FF 12 e0 76 08 00 00 45 01 45 45 Byte 08 in 216

00 03 07 17 F7 FF 12 e0 69 09 00 00 45 01 45 45 Byte 09 in 216

00 3C 06 E0 F7 FF 12 e0 20 0A 00 00 45 01 45 45 Byte 0A in 216

00 01 05 1D F7 FF 12 e0 63 0B 00 00 45 01 45 45 Byte 0B in 216

00 02 04 1E F7 FF 12 e0 62 0C 00 00 45 01 45 45 Byte 0C in 216

00 07 03 1B F7 FF 12 e0 65 0D 00 00 45 01 45 45 Byte 0D in 216

00 00 02 24 F7 FF 12 e0 5C 0E 00 00 45 01 45 45 Byte 0E in 216

00 05 01 21 F7 FF 12 e0 5F 0F 00 00 45 01 45 45 Byte 0F in 216

Figure 11: Chosen card identities

7.3. Key recovery attack on iClass Elite

In order to recover a master key K cus, an adversary

proceeds as follows. First, exploiting the weakness described

in Section 7.2.2, the adversary builds a list of chosen card

identities like the ones shown in Figure 11. This Figure

contains a list of 15 card identities and their corresponding

key-byte selection indices hash1(id). The selection of card

identities in this list is malicious. They are chosen such that

the resulting key ksel has very low entropy (in fact, it is

possible to find several lists with similar characteristics).

For the first card identity in the list, the resulting key ksel

is built out of only three different bytes from hash2(K cus),
namely 0x00, 0x01 and 0x45. Therefore, this key has

as little as 24 bits of entropy (instead of 56). Next, the

adversary will initiate an authentication protocol run with

a legitimate reader, pretending to be a card with identity

id = 0x000B0FFFF7FF12E0 as shown in the list. Fol-

lowing the authentication protocol, the reader will return a

message containing a nonce nR and a MAC using k. The

adversary will repeat this procedure for each card identity

in the list, storing a tuple 〈id,nC,nR,MAC〉 for each entry.

Afterwards, off-line, the adversary tries all 224 possibilities

for bytes 0x00, 0x01 and 0x45 for the first key identity.

For each try, he computes the resulting k and recomputes

the authentication run until he finds a MAC equal to the one

he got from the reader. Then he has recovered bytes 0x00,

0x01 and 0x45 from hash2(K cus).

The adversary proceeds similarly for the remaining card

identities from the list. Although, this time he already knows

bytes 0x00, 0x01 and 0x45 and therefore only two bytes

per identity need to be explored. This lowers the complexity

to 216 for each of the remaining entries in the list. The bytes

that need to be explored at each step are highlighted with

boldface in the list. At this point the adversary has recov-

ered the first 16 bytes of hash2(K cus). Finally, exploiting

the weakness described in Section 7.2.1, the adversary is

able to recover the custom master key K cus with a total

computational complexity of 225 DES encryptions.

8. Conclusion

We have shown that the security of several building blocks

of iClass is unsatisfactory. Again, obscurity does not provide

extra security and there is always a risk that it can be

circumvented. In fact, experience shows that instead of

adding extra security it often covers up negligent designs.

It is hard to imagine why HID decided, back in 2002, to

use single DES for key diversification considering that DES

was already broken in practice in 1997 [LG98]. Especially

when most (if not all) HID readers are capable of computing

3DES. Another unfortunate choice was to design their pro-

prietary hash0 function instead of using an openly designed

and community reviewed hash function like SHA-1. From

a cryptographic perspective, their proprietary function hash0

fails to achieve any desirable security goal.

Furthermore, we have found many vulnerabilities in the

cryptography and implementation of iClass that result in

two key recovery attacks. Our first attack requires one

eavesdropped authentication trace with a genuine reader

(which takes about 10ms). Next, the adversary needs 222

authentication attempts with a card, which in practice takes

approximately six hours. To conclude the attack, the adver-

sary needs only 240 off-line MAC computations to recover

the card key. The whole attack can be executed within a day.

For the attack against iClass Elite, an adversary only needs

15 authentication attempts with a genuine reader to recover

the custom master key. The computational complexity of

this attack is negligible, i.e., 225 DES encryptions. This

attack can be executed from beginning to end in less than

five seconds. We have successfully executed both attacks in

practice and verified the claimed attack times.

This article reinforces the point that has been made

many times: security by obscurity often covers up negligent

designs. The built-in key diversification and especially the

function hash0 is advertised as a security feature but in fact it

is a patch to circumvent weaknesses in the cipher. The cipher

is a basic building block for any secure protocol. Experience

shows that once a weakness in a cipher has been found, it is

extremely difficult to patch it in a satisfactory manner. Using

a well known and community reviewed cipher is a better

alternative. The technique described in [RSH+12] could be

considered as a palliating countermeasure for our first attack.

More is not always better: the key diversification algorithm

of iClass Elite requires fifteen DES operations more than

iClass Standard while it achieves inferior security. Instead, it

would have been more secure and efficient to use 3DES than

computing 16 single DES operations in an ad hoc manner.

Furthermore, NIST have proposed a statistical test

suite [RSN+01] that can be used to measure the crypto-

graphic strength of a cipher. Although this might identify

weaknesses in a cipher, still many weaknesses arise from

mistakes in the implementation. In order to find these prob-

lems, it is good practice to incorporate some form of formal

verification in the development and implementation of secu-

rity products, see for instance [FL12]. Also, systematic and

automated model checking techniques proposed in [Tre08]

can help to detect and avoid implementation weaknesses like

the privilege escalation in iClass. Alternatively, formalizing

the whole design in a theorem prover [Bla01], [JWS11] may

reveal additional weaknesses. It remains an open question

whether the unusual data structures and functions that we

recovered in this paper can be recovered using automated

techniques, like for example with Howard [SSB11]. Auto-

mated techniques might speed up and assist in the reverse

engineering of algorithms and data structures from software

binaries. In line with the principles of responsible disclosure,

we have notified the manufacturer HID Global and informed

them of our findings back in November 2011. By the time

of writing this article, HID has extended their product line

with support for AES-enabled Mifare DESFire EV1 cards34

which provide higher security levels for those customers con-

sidering migration alternatives. A practical counter-measure

until migration would be to stop using the iClass Elite

diversification scheme and only use iClass Standard with

customized master keys for all applications. However, such

measure should only be considered as a temporary mitigation

and not as a definite solution as the (more expensive) attack

on iClass Standard still applies.

3. www.hidglobal.com/iclass-hf-migration-reader-family-datasheet

4. www.hidglobal.com/mifare-desfire-ev1-card-datasheet

9. Acknowledgements

We are thankful to Milosch Meriac for his kind support

while bypassing the PIC’s read protection mechanisms which

enabled the firmware recovery of the iClass reader. The

authors would also like to thank the anonymous reviewers

for their outstanding work. Their constructive and valuable

comments helped us to substantially improve the quality of

this paper.

References

[BGV+12] Josep Balasch, Benedikt Gierlichs, Roel Verdult,
Lejla Batina, and Ingrid Verbauwhede. Power analy-
sis of Atmel CryptoMemory - recovering keys from
secure EEPROMs. In 12th Cryptographers’ Track
at the RSA Conference (CT-RSA 2012), volume
7178 of Lecture Notes in Computer Science, pages
19–34. Springer-Verlag, 2012.

[BKZ11] Alex Biryukov, Ilya Kizhvatov, and Bin Zhang.
Cryptanalysis of the Atmel cipher in SecureMem-
ory, CryptoMemory and CryptoRF. In 9th Applied
Cryptography and Network Security (ACNS 2011),
volume 6715 of Lecture Notes in Computer Science,
pages 91–109. Springer-Verlag, 2011.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In 14th IEEE work-
shop on Computer Security Foundations (CSFW
2001), pages 82–96. IEEE Computer Society, 2001.

[Bog07] Andrey Bogdanov. Linear slide attacks on the
KeeLoq block cipher. In 3rd International Con-
ference on Information Security and Cryptology
(INSCRYPT 2007), volume 4990 of Lecture Notes
in Computer Science, pages 66–80. Springer-Verlag,
2007.

[COQ09] Nicolas T. Courtois, Sean O’Neil, and Jean-Jacques
Quisquater. Practical algebraic attacks on the
Hitag2 stream cipher. In 12th Information Secu-
rity Conference (ISC 2009), volume 5735 of Lec-
ture Notes in Computer Science, pages 167–176.
Springer-Verlag, 2009.

[Cou09] Nicolas T. Courtois. The dark side of security by
obscurity - and cloning MIFARE Classic rail and
building passes, anywhere, anytime. In 4th Inter-
national Conference on Security and Cryptography
(SECRYPT 2009), pages 331–338. INSTICC Press,
2009.

[Cum03] Nathan Cummings. iClass levels of security, April
2003.

[Cum06] Nathan Cummings. Sales training. Slides from HID
Technologies, March 2006.

[DDSW11] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Privilege esca-
lation attacks on Android. In 13th Information
Security Conference (ISC 2010), volume 6531 of

www.hidglobal.com/iclass-hf-migration-reader-family-datasheet
www.hidglobal.com/mifare-desfire-ev1-card-datasheet

Lecture Notes in Computer Science, pages 346–360.
Springer-Verlag, 2011.

[DHW+12] Benedikt Driessen, Ralf Hund, Carsten Willems,
Carsten Paar, and Thorsten Holz. Don’t trust
satellite phones: A security analysis of two satphone
standards. In 33rd IEEE Symposium on Security
and Privacy (S&P 2012), pages 128–142. IEEE
Computer Society, 2012.

[dKGHG08] Gerhard de Koning Gans, Jaap-Henk Hoepman, and
Flavio D. Garcia. A practical attack on the MIFARE
Classic. In 8th Smart Card Research and Advanced
Applications Conference (CARDIS 2008), volume
5189 of Lecture Notes in Computer Science, pages
267–282. Springer-Verlag, 2008.

[FIP99] FIPS 46-3, Data Encryption Standard (DES). Na-
tional Institute for Standards and Technology
(NIST), Gaithersburg, MD, USA, 1999.

[FL12] Riccardo Focardi and Flaminia L. Luccio. Secure
recharge of disposable RFID tickets. In 8th Interna-
tional Workshop on Formal Aspects of Security and
Trust (FAST 2011), volume 7140 of Lecture Notes
in Computer Science, pages 85–99. Springer-Verlag,
2012.

[GdKGM+08] Flavio D. Garcia, Gerhard de Koning Gans, Ruben
Muijrers, Peter van Rossum, Roel Verdult, Ronny
Wichers Schreur, and Bart Jacobs. Dismantling
MIFARE Classic. In 13th European Symposium on
Research in Computer Security (ESORICS 2008),
volume 5283 of Lecture Notes in Computer Science,
pages 97–114. Springer-Verlag, 2008.

[GdKGV11] Flavio D. Garcia, Gerhard de Koning Gans, and
Roel Verdult. Exposing iClass key diversification.
In 5th USENIX Workshop on Offensive Technologies
(USENIX WOOT 2011), pages 128–136. USENIX
Association, 2011.

[GdKGVM12] Flavio D. Garcia, Gerhard de Koning Gans, Roel
Verdult, and Milosch Meriac. Dismantling iClass
and iClass Elite. In 17th European Symposium on
Research in Computer Security (ESORICS 2012),
Lecture Notes in Computer Science. Springer-
Verlag, 2012.

[Gol97] Jovan Dj. Golic. Cryptanalysis of alleged A5
stream cipher. In 16th International Conference
on the Theory and Application of Cryptographic
Techniques, Advances in Cryptology (EUROCRYPT
1997), volume 1233 of Lecture Notes in Computer
Science, pages 239–255. Springer-Verlag, 1997.

[GvRVWS09] Flavio D. Garcia, Peter van Rossum, Roel Verdult,
and Ronny Wichers Schreur. Wirelessly pickpock-
eting a MIFARE Classic card. In 30th IEEE
Symposium on Security and Privacy (S&P 2009),
pages 3–15. IEEE Computer Society, 2009.

[GvRVWS10] Flavio D. Garcia, Peter van Rossum, Roel Verdult,
and Ronny Wichers Schreur. Dismantling Secure-
Memory, CryptoMemory and CryptoRF. In 17th
ACM Conference on Computer and Communica-
tions Security (CCS 2010), pages 250–259. ACM,
2010.

[Hel80] M. Hellman. A cryptanalytic time-memory trade-
off. IEEE Transactions on Information Theory,
26(4):401–406, 1980.

[HID06] HID Global. HID management key letter, Novem-
ber 2006.

[HID09] HID Global. iClass RW100, RW150, RW300,
RW400 readers, 2009.

[IC04] PicoPass 2KS. Product Datasheet, Nov 2004. Inside
Contactless.

[ISO00] ISO/IEC 15693-1. Identification cards — Contact-
less integrated circuit cards — Vicinity cards —
Part 1: Physical characteristics. International Orga-
nization for Standardization (ISO), Geneva, Switzer-
land, 2000.

[ISO06] ISO/IEC 15693-2. Identification cards — Contact-
less integrated circuit cards — Vicinity cards —
Part 2: Air interface and initialization. International
Organization for Standardization (ISO), Geneva,
Switzerland, 2006.

[ISO09] ISO/IEC 15693-3. Identification cards — Contact-
less integrated circuit cards — Vicinity cards —
Part 3: Anticollision and transmission protocol. In-
ternational Organization for Standardization (ISO),
Geneva, Switzerland, 2009.

[JWS11] Bart Jacobs and Ronny Wichers Schreur. Logical
formalisation and analysis of the MIFARE Classic
card in PVS. In 2nd International Conference
on Interactive Theorem Proving, volume 6898 of
Lecture Notes in Computer Science, pages 3–17.
Springer-Verlag, 2011.

[KJL+11] ChangKyun Kim, Eun-Gu Jung, Dong Hoon Lee,
Chang-Ho Jung, and Daewan Han. Cryptanalysis
of INCrypt32 in HID’s iClass systems. Cryptology
ePrint Archive, Report 2011/469, 2011.

[KKMP09] Markus Kasper, Timo Kasper, Amir Moradi, and
Christof Paar. Breaking KeeLoq in a flash: on
extracting keys at lightning speed. In 2nd Interna-
tional Conference on Cryptology in Africa, Progress
in Cryptology (AFRICACRYPT 2009), volume 5580
of Lecture Notes in Computer Science, pages 403–
420. Springer-Verlag, 2009.

[KSRW04] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Ru-
bin, and Dan S. Wallach. Analysis of an electronic
voting system. In 25th IEEE Symposium on Secu-
rity and Privacy (S&P 2004), pages 27–40. IEEE
Computer Society, 2004.

[LG98] Mike Loukides and John Gilmore, editors. Crack-
ing DES: Secrets of Encryption Research, Wiretap
Politics and Chip Design. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1998.

[LST+09] Stefan Lucks, Andreas Schuler, Erik Tews, Ralf-
Philipp Weinmann, and Matthias Wenzel. Attacks
on the DECT authentication mechanisms. In 9th
Cryptographers’ Track at the RSA Conference (CT-
RSA 2009), volume 5473 of Lecture Notes in Com-
puter Science, pages 48–65. Springer-Verlag, 2009.

[Mer10] Milosch Meriac. Heart of darkness - exploring the
uncharted backwaters of HID iClass security. In
27th Chaos Computer Congress (27C3), December
2010.

[NESP08] Karsten Nohl, David Evans, Starbug, and Henryk
Plötz. Reverse engineering a cryptographic RFID
tag. In 17th USENIX Security Symposium (USENIX
Security 2008), pages 185–193. USENIX Associa-
tion, 2008.

[Oec03] P. Oechslin. Making a faster cryptanalytic time-
memory trade-off. pages 617–630. Springer-Verlag,
2003.

[PN12] Henryk Plötz and Karsten Nohl. Peeling away
layers of an RFID security system. In 16th In-
ternational Conference on Financial Cryptography
and Data Security (FC 2012), volume 7035 of
Lecture Notes in Computer Science, pages 205–219.
Springer-Verlag, 2012.

[RSH+12] Amir Rahmati, Mastooreh Salajegheh, Dan Hol-
comb, Jacob Sorber, Wayne P. Burleson, and Kevin
Fu. TARDIS: Time and remanence decay in SRAM
to implement secure protocols on embedded devices
without clocks. In 21st USENIX Security Sym-
posium (USENIX Security 2012), pages 221–236.
USENIX Association, 2012.

[RSN+01] Andrew Rukhin, Juan Soto, James Nechvatal, Miles
Smid, Elaine Barker, Stefan Leigh, Mark Levenson,
Mark Vangel, David Banks, Alan Heckert, James
Dray, and San Vo. A statistical test suite for the
validation of random number generators and pseudo

random number generators for cryptographic appli-
cations. NIST Special Publication (800-22), 22:1–
152, 2001.

[SHXZ11] Siwei Sun, Lei Hu, Yonghong Xie, and Xiangyong
Zeng. Cube cryptanalysis of Hitag2 stream cipher.
In 10th International Conference on Cryptology and
Network Security (CANS 2011), volume 7092 of
Lecture Notes in Computer Science, pages 15–25.
Springer-Verlag, 2011.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia.
Extending SAT solvers to cryptographic problems.
In 12th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2009),
volume 5584 of Lecture Notes in Computer Science,
pages 244–257. Springer-Verlag, 2009.

[SSB11] Asia Slowinska, Traian Stancescu, and Herbert Bos.
Howard: a dynamic excavator for reverse engineer-
ing data structures. In 18th Network and Dis-
tributed System Security Symposium (NDSS 2011),
San Diego, CA, 2011. The Internet Society.

[Tre08] Jan Tretmans. Model based testing with labelled
transition systems. In Formal Methods and Testing
(FORTEST 2008), volume 4949 of Lecture Notes
in Computer Science, pages 1–38. Springer-Verlag,
2008.

[VGB12] Roel Verdult, Flavio D. Garcia, and Josep Balasch.
Gone in 360 seconds: Hijacking with Hitag2. In
21st USENIX Security Symposium (USENIX Secu-
rity 2012), pages 237–252. USENIX Association,
2012.

[VGE13] Roel Verdult, Flavio D. Garcia, and Barış Ege. Dis-
mantling megamos crypto: Wirelessly lockpicking
a vehicle immobilizer. In 22nd USENIX Security
Symposium (USENIX Security 2013). USENIX As-
sociation, 2013.

[vN11] Petr Štembera and Martin Novotný. Breaking
Hitag2 with reconfigurable hardware. In 14th Eu-
romicro Conference on Digital System Design (DSD
2011), pages 558–563. IEEE Computer Society,
2011.

