
Completeness of Symbolic Hashes in the

Standard Model

Flavio D. Garcia and Peter van Rossum

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

{flaviog,petervr}@cs.ru.nl

Abstract. We study an extension of the well-known Abadi-Rogaway logic with
hashes. Previously, we have shown that it is possible to give a sound computa-
tional interpretation of this extension in the standard model using Canetti’s oracle
hashing. This paper extends Micciancio and Warinschi’s completeness result for
the original logic to this setting.

1 Introduction

The analysis of security protocols is being carried out mainly by means of two differ-
ent techniques. On the one hand, there is the logic approach, which sees messages as
algebraic objects defined using some formal language. In this view, cryptographic oper-
ations are algebraic operations which are unbreakable. Attackers are typically modelled
as so-called Dolev-Yao attackers [DY83], having total control over the network, having
no computational limitations, and being only (but absolutely) incapable of breaking
cryptographic operations. This view is appealing, because it is relatively easy to use and
captures most mistakes commonly made in security protocols.

On the other hand, there is the complexity-based approach. Here messages are bit
strings and cryptographic operations are functions on bit strings satisfying certain secu-
rity properties [Gol01]. Common security notions like secrecy, authenticity, and integrity
are formulated ‘in terms of the probability that someone can mount a successful attack.
An attacker here is a resource bounded probabilistic algorithm, limited by running time
and/or memory, but capable of breaking cryptographic operations, if that is computa-
tionally feasible. The complexity based methods are more general and more realistic,
but also more complex to use.

In the last few years much research has been done to relate these two perspectives
[AR02,AJ01,MW04,Her05]. Such a relation takes the form of a function mapping alge-
braic messages m to (distributions over) bit strings [[m]]. This map then should relate
messages that are observationally equivalent in the algebraic world (meaning that a
Dolev-Yao attacker can see no difference between them) to indistinguishable distribu-
tions over bit strings (meaning that a computationally bounded adversary can only with
negligible probability distinguish the distributions). Such a map allows one to use alge-
braic methods, possibly even automated, to reason about security properties of protocols
and have those reasonings be valid also in the computational world.

Recently, some study has been made on extending the Abadi-Rogaway logic and the
mapping to the computational world with hashes [GvR06b,GvR06c,GvR06a]. In fact, in

the conclusions of [MW04], Micciancio and Warinschi briefly but explicitly question if
this logical approach can be extended to, among other things, collision resistant hashes.
Backes, Pfitzmann, and Waidner [BPW06] show that in their simulatability framework
[PW00] a sound interpretation of hashes cannot exist, but that it is possible to give
a sound interpretation of formal hashes in the simulatability framework using random
oracles.

The problem with hashes is that in the algebraic world h(m) and h(m′) are in-
distinguishable for a Dolev-Yao attacker if the attacker does not know m and m′. In
the computational world, however, the standard security definition — it must be com-
putationally infeasible to compute any pre-image of a hash value or a hash collision
[RS04] — does not guarantee that the hash function hides all partial information about
the message; hence there is no guarantee that [[h(m)]] and [[h(m′)]] are computationally
indistinguishable.

In [GvR06c], the present authors give a sound interpretation of formal hashes us-
ing the notion of perfectly one-way functions (a.k.a. oracle hashing) from Canetti and
others [Can97,CMR98]. These functions are probabilistic hashes that hide all partial
information.

Completeness. Although soundness results allow us to port proofs of secrecy properties
from the algebraic world to the computation world, it does not permit to port, for
instance, authenticity and integrity results. For hashes, this limits the usefulness of a
soundness result. For example, consider a protocol in which an agent A chooses a nonce
n and commits to this nonce by sending h(n) to another agent B. Later in the protocol,
A will reveal the nonce n by sending n itself to B. Security in this setting means that A
cannot change her choice after sending h(n). In the algebraic world, this is guaranteed
by the fact that the message h(n)n (the concatenation of the relevant messages in the
protocol run) is observationally distinct from h(n)n′, with n′ 6= n. We would like to be
able to conclude from this algebraic property that [[h(n)n]] is computationally distinct
from [[h(n)n′]], since that is needed to guarantee the security in the computational world.

What is needed here is completeness: computational equivalence of [[m]] and [[m′]]
should imply observational equivalence of m and m′. For the original Abadi-Rogaway
logic, completeness under appropriate conditions on the encryption scheme was proven
by Micciancio and Warinschi [MW04]. In this paper we extend this completeness proof
to our version with hashes.

Overview. Section 2 introduces the message algebra from [GvR06c], including the
probabilistic encryption and probabilistic hash operators. It also defines the observa-
tional equivalence relation on messages. Section 3 then introduces the computational
world, giving the security definitions for encryption and hashes. In Section 4 the se-
mantic interpretation [[−]] is defined and the soundness result of [GvR06c] is recalled.
Section 5 proves the completeness of the interpretation. The proof presented here pro-
ceeds along the lines of [MW04], reusing results from that paper for simplicity whenever
feasible.

2 The algebraic setting

This section describes the message space and the observational equivalence from [GvR06c]
extending the well known Abadi-Rogaway logic [AR02] of algebraic messages with hashes.

2

These messages are used to describe cryptographic protocols and the observational equiv-
alence tells whether or not two protocol runs are indistinguishable for a global eaves-
dropper. This setting is exactly the same as in [GvR06c], so here we only give a brief
summary.

Definition 2.1. Messages are constructed using algebraic encryption, hashing, and
pairing operations from keys (k ∈ Key), nonces (n ∈ Nonce), randomness labels (r ∈
Random), and constants (c ∈ Const):

Msg ∋ m := c | k | n | {|m|}rk | h
r(m) | 〈m,m〉 | �r | ⊠r .

There is one special key called k� and for every randomness label r there is a special
nonce called nr

⊠
; these are only used when interpreting the special symbols (�r and ⊠

r)
as bit string and do not otherwise form a part of the message algebra.

The closure of a set U of messages is the set of all messages that can be constructed
from U using tupling, detupling, and decryption. It represents the information an ad-
versary could deduce knowing U .

Definition 2.2 (Closure). The closure of a set U of messages, denoted by U , is the
smallest set of messages satisfying: 1. Const ⊆ U ; 2. U ⊆ U ; 3.m,m′ ∈ U =⇒ 〈m,m′〉 ∈
U ; 4. {|m|}rk, k ∈ U =⇒ m ∈ U ; 5. 〈m,m′〉 ∈ U =⇒ m,m′ ∈ U . For the singleton set

{m}, we write m instead of {m}.

The function pattern : Msg→ Msg from [GvR06c] is a straightforward extension from
the same function in Abadi-Rogaway [AR02] which takes a message m and reduces it to
a pattern. Intuitively, this is the pattern that an attacker sees in a message given that
she knows the messages in U .

pattern(m) = pattern(m,m)

pattern(〈m1,m2〉, U) = 〈pattern(m1, U), pattern(m2, U)〉

pattern({|m|}rk, U) =

{

{|pattern(m,U)|}rk, if k ∈ U ;
�

R({|m|}r

k
), otherwise.

pattern(hr(m), U) =

{

hr(pattern(m,U)), if m ∈ U ;

⊠
R(hr(m)), otherwise.

pattern(m,U) = m in any other case.

Here R : Enc ∪ Hash →֒ Random is an injective function that takes an encryption
or a hash value and outputs a tag that identifies its randomness. This tagging function
is needed to make sure that the function pattern is injective: distinct undecryptable
messages should be replaced by distinct boxes and similarly for hashes.

Example 2.3. Consider the message

m = 〈{|{|1|}r
′

k′ , h
r̃(n)|}rk, h

r̂(k), k〉.

pattern(m) = 〈{| �s , ⊠
t |}rk, h

r̂(k), k〉, because k′, n are not in m,Then

where t = R(hr̃(n)) and s = R({|1|}r
′

k′).

3

Definition 2.4 (Renaming). Two messages m and m′ are said to be equivalent up to
renaming, notation m ≡ m′, if there is a type preserving permutation σ of Key∪Nonce∪
Box∪Random such that m = m′σ. Here m′σ denotes simultaneous substitution of x by
σ(x) in m′, for all x ∈ Key ∪ Nonce ∪ Box ∪ Random.

Definition 2.5 (Observational equivalence). Two messages m and m′ are said to
be observationally equivalent, denoted by m ∼= m′, if pattern(m) ≡ pattern(m′).

From the original setting in [AR02] we inherit the requirement that messages must
be acyclic.

Definition 2.6 (Acyclicity). Let m be a message and k, k′ two keys. The key k is said
to encrypt k′ in m ifm has a sub-message of the form {|m′|}rk with k

′ being a sub-message
of m′. A message is said to be acyclic if there is no sequence k1, k2, . . . , kn, kn+1 = k1 of
keys such that ki encrypts ki+1 in m for all i ∈ {1, . . . , n}.

3 The computational setting

This section gives a brief overview of the concepts used in the complexity theoretic
approach to security protocols. Much of this is standard; the reader is referred to
[GB01,BDJR97] for a thorough treatment of the basic concepts, to [AR02] for the notion
of type-0 security for encryption schemes (see Section 3.1 below), and to [Can97] for the
notion of oracle hashing (see Section 3.2 below). This section follows the same lines as
[GvR06c]; here we also focus on the extra requirements needed to achieve completeness:
confusion freeness for encryption schemes (Definition 3.3) and collision resistance for
hash schemes (Definition 3.5).

In the computational world, messages are elements of Str := {0, 1}∗. Cryptographic
algorithms and adversaries are probabilistic polynomial-time algorithms. When analyz-
ing cryptographic primitives, it is customary to consider probabilistic algorithms that
take an element in Param := {1}∗ as input, whose length scales with the security pa-
rameter. By making the security parameter large enough, the system should become
arbitrarily hard to break.

This idea is formalized in the security notions of the cryptographic operations. The
basic one, which is what is used to define the notion of semantically equivalent messages,
is that of computational indistinguishability of probability ensembles over Str. Here a
probability ensemble over Str is a sequence {Aη}η∈N of probability distributions over Str
indexed by the security parameter.

Definition 3.1 (Computational indistinguishability). Two probability ensembles
{Xη}η and {Yη}η are computationally indistinguishable if for every probabilistic polyno-
mial-time algorithm D,

P[x
$
← Xη;D(1η, x) = 1]− P[x

$
← Yη;D(1η, x) = 1]

is a negligible function of η.

Recall that a function f : N → N is called negligible if for all positive polynomials
p, f(η) ≤ 1

p(η) for large enough η. We now give the formal definition of an encryption

scheme and its security notion in Section 3.1 and of oracle hashing in Section 3.2.

4

3.1 Encryption scheme

For each security parameter η ∈ N we let Plaintextη ⊆ Str be a non-empty set of
plaintexts, satisfying that for each η ∈ N : Plaintextη ⊆ Plaintextη+1 as in Goldwasser
and Bellare [GB01]. Let us define Plaintext =

⋃

η Plaintextη. There is a set Keys ⊆ Str
of keys and also a set Ciphertext ⊆ Str of ciphertexts. Furthermore, there is a special bit
string ⊥ not appearing in Plaintext or Ciphertext. An encryption scheme Π consists of
three algorithms:

1. a (probabilistic) key generation algorithm K : Param→ Keys that outputs, given a
unary sequence of length η, a randomly chosen element of Keys;

2. a (probabilistic) encryption algorithm E : Keys × Str → Ciphertext ∪ {⊥} that
outputs, given a key and a bit string, a possibly randomly chosen element from
Ciphertext or ⊥;

3. a (deterministic) decryption algorithmD : Keys×Str→ Plaintext∪{⊥} that outputs,
given a key and a ciphertext, an element from Plaintext or ⊥.

These algorithms must satisfy that the decryption (with the correct key) of a ciphertext
returns the original plaintext.

Now we define type-0 security of an encryption scheme as in [AR02], which is a vari-
ant of the standard semantic security definition, enhanced with some extra properties.
In particular a type-0 secure encryption scheme is which-key concealing, repetition con-
cealing and length hiding. We refer to the original paper for motivation and explanations
on how to achieve such an encryption scheme.

Definition 3.2. An adversary (for type-0 security) is a probabilistic polynomial-time
algorithm AF(−),G(−) : Param→ {0, 1} having access to two probabilistic oracles F ,G :
Str→ Str. The advantage of such an adversary is the function AdvA : N→ R defined by

AdvA(η) = P[κ, κ′
$
← K(1η);AE(κ,−),E(κ′,−)(1η) = 1]−

P[κ
$
← K(1η);AE(κ,0),E(κ,0)(1η) = 1].

Here the probabilities are taken over the choice of κ and κ′ by the key generation algo-
rithm, over the choices of the oracles, and over the internal choices of A. An encryption
scheme 〈K, E ,D〉 is called type-0 secure if for all polynomial-time adversaries A as above,
the advantage AdvA is a negligible function of η.

For completeness it is needed that the decryption algorithm returns reject whenever
it is called with a key that does was not used to encrypt the message in the first place.
The special bit string ⊥ is used to indicate failure of decryption. This property is called
confusion freeness. See [MW04], where the completeness for the original Abadi-Rogaway
logic is proven.

Definition 3.3 (Confusion freeness). Let Π = 〈K, E ,D〉 be an encryption scheme
indexed by the security parameter η. Π is said to be confusion free if for all bit strings
µ the probability

P[κ1, κ2
$
← K(η) : Dκ1 (Eκ2(µ)) 6= ⊥]

is a negligible function of η.

5

3.2 Oracle hashing

In [GvR06c], Canetti’s notion of oracle hashing [Can97] is used as the computational
counterpart to the algebraic hash operation. A hash scheme consists of two algorithms
H and V . The probabilistic algorithm H : Param × Str → Str takes a unary sequence
and a message and outputs a hash value; the verification algorithm V : Str×Str→ {0, 1}
that given two messages x and c correctly decides whether c is a hash of x or not.

Canetti gives essentially two security notions for such a hash scheme. The first one,
oracle indistinguishability, guarantees that an adversary can gain no information at all
about a bit string, given its hash value (or rather, with sufficiently small probability).
This property is used in [GvR06c] to prove the soundness of the interpretation. The sec-
ond one is an appropriate form of collision resistance. It guarantees that an adversary
cannot (or rather, again, with sufficiently small probability) compute two distinct mes-
sages that successfully pass the verification test with the same hash value. This property
will be used in this paper to prove completeness.

Definition 3.4 (Oracle indistinguishability). A hash scheme 〈H,V〉 is said to be
oracle indistinguishable if for every family of probabilistic polynomial-time predicates
{Dη : Str→ {0, 1}}η∈N and every positive polynomial p there is a polynomial size family
{Lη}η∈N of subsets of Str such that for all large enough η and all x, y ∈ Str \ Lη:

P[Dη(H(1
η, x)) = 1]− P[Dη(H(1

η, y)) = 1] <
1

p(η)
.

Here the probabilities are taken over the choices made by H and the choices made by
Dη.

Definition 3.5 (Collision resistance). A hash scheme 〈H,V〉 is said to be collision
resistant if for every probabilistic polynomial time adversary A, the probability

P[〈c, x, y〉
$
← A(1η);x 6= y ∧ V(x, c) = V(y, c) = 1]

is a negligible function of η.

As an example we reproduce here a hash scheme proposed in [Can97] that satisfies
both security notions. Let p be a large (i.e., scaling with η) safe prime. Take H(x) =
〈r2, r2·h(x) mod p〉, where r is a randomly chosen element in Z

∗
p and h is any collision

resistant hash function. The verification algorithm V(x, 〈a, b〉) just checks whether b =
ah(x) mod p.

4 Interpretation

Section 2 describes a setting where messages are algebraic terms generated by some
grammar. In Section 3 messages are bit strings and operations are given by probabilistic
algorithms operating on bit strings. This section shows how to map algebraic messages
to (distributions over) bit strings. This interpretation is very much standard. We refer to
[AR02,AJ01,MW04] for a thorough explanation. We follow the notation from [GvR06c].

Tagged representation. Throughout this paper we assume that it is always possible
to recover the type information of a message from its bit string representation. This can
be easily achieved by adding the necessary type tags to the bit string representation. We
will abstract from this representation by overloading the notation. We use Greek letters

6

for bitstrings and µ represents a bit string of a generic type. We write µ1µ2 for a pair
of bit strings (in [AR02] this would be written as 〈(µ1, µ2), “pair”〉); ǫ for a ciphertext;
κ for a key; ψ for a hash value; ν for a nonce and ς for a constant.

Definition 4.1. For every message m we define the set R(m) ⊆ Msg of random mes-
sages in m as follows:

R(c) = ∅ R({|m|}rk) = R(m) ∪ {k, {|m|}rk}

R(n) = {n} R(hr(m)) = R(m) ∪ {hr(m)}

R(k) = {k} R(〈m1,m2〉) = R(m1) ∪ R(m2)

R(�r) = {k�,�
r} R(⊠r) = {nr

⊠
,⊠r}.

When interpreting a message m as (ensembles of distributions over) bit strings (Defi-
nition 4.3 below), we will first choose a sequence of coin flips for all elements of R(m)
and use these sequences as source of randomness for the appropriate interpretation al-
gorithms.

Definition 4.2. Coins is the set {0, 1}ω, the set of all infinite sequences of 0’s and 1’s.
We equip Coins with the probability distribution obtained by flipping a fair coin for each
element in the sequence. For every finite set X we define Coins(X) as {τ : X → Coins}
and equip it with the induced product probability distribution. Furthermore, for every
message m we write Coins(m) instead of Coins(R(m)).

An element of τ of Coins(m) gives, for every sub-message m′ of m that requires random
choices when interpreting this sub-message as a bit string, an infinite sequence τ(m′) of
coin flips that will be used to resolve the randomness.

Now we are ready to give semantic to our message algebra. We use E to interpret
encryptions, K to interpret key symbols, and H to interpret hashes. We let C : Const→
Str be a function that (deterministically) assigns a constant bit string to each constant
identifier. We let N : Param→ Str be the nonce generation function that, given a unary
sequence of length η, chooses uniformly and randomly a bit string from {0, 1}η.

Definition 4.3. For a message m, a value of the security parameter η ∈ N, a finite
set U of messages containing R(m), and for a choice τ ∈ Coins(U) of (at least) all the
randomness in m, we can (deterministically) create a bit string [[m]]

τ
η ∈ Str as follows:

[[c]]
τ
η = C(c) [[{|m|}rk]]

τ
η = E([[k]]τη , [[m]]

τ
η , τ({|m|}

r
k))

[[k]]
τ
η = K(1η, τ(k)) [[hr(m)]]

τ
η = H(1η, [[m]]

τ
η , τ(h

r(m)))

[[n]]
τ
η = N (1η, τ(n)) [[�r]]

τ
η = E([[k�]]

τ
η, C(0), τ(�

r))

[[〈m1,m2〉]]
τ
η = [[m1]]

τ
η[[m2]]

τ
η [[⊠r]]τη = H(1η, [[nr

⊠
]]τ
η
, τ(⊠r)).

Note that [[m]]
τ
η = [[m]]

τ |R(m)

η . For a fixed message m and η ∈ N, choosing τ from the
probability distribution Coins(R(m)) creates a probability distribution [[m]]η over Str:

[[m]]η := [τ
$
← Coins(m); [[m]]

τ
η].

Note that although the codomain of τ ∈ Coins(m) is Coins, the set of infinite bit
strings, when interpreting a fixed messagem at a fixed value of the security parameter η,
only a predetermined finite initial segment of each sequence of coin flips will be used by

7

K, N , E , and H. Letting η range over N creates an ensemble of probability distributions
[[m]] over Str, namely [[m]] := {[[m]]η}η∈N. Moreover, we overload the semantic function

[[−]]τη : Msg→ Str to sets of messages U , in the natural manner:

[[U]]
τ
η :=

⋃

m∈U

[[m]]
τ
η .

Throughout this paper, when it does not cause confusion, we write [[−]]τ instead of [[−]]τη
to simplify notation.

In [GvR06c], the following result is proven. Well-spreadness here is a mild condition
on the encryption scheme, meaning that no ciphertext is exceptionally likely to occur as
the encryption of a particular message. See [GvR06c] for more details. This notion plays
no role in the remainder of this paper.

Theorem 4.4 (Soundness) Assume that the encryption scheme 〈K, E ,D〉 is type-0
secure and well-spread and that the hash scheme 〈H,V〉 is oracle indistinguishable and
collision resistant. Let m and m′ be acyclic messages. Then m ∼= m′ =⇒ [[m]] ≡ [[m′]].

The next section will prove the converse of this under appropriate conditions.

5 Completeness

This section shows that the interpretation proposed in the previous section is complete.
Throughout this section we assume that the encryption scheme 〈K, E ,D〉 is type-0 secure
and well-spread and that the probabilistic hash scheme 〈H,V〉 is collision resistant and
oracle indistinguishable.

Throughout the completeness proof we follow the steps of Micciancio–Warinschi and
their notation when possible. We recall here some of their results as there are used in
our proof.

In the original Abadi-Rogaway logic, the useful information for an adversary is de-
termined by the set of keys she can learn. We define the function recoverable and its
computational counterpart Crecoverable as in [MW04]. These functions extract the set
of keys observable by an adversary from an algebraic message and a bit string respec-
tively.

recoverable(m) = recoverable(m, |m|, ∅)

recoverable(m, d+ 1, U) = Fkr(m, recoverable(m, d, U))

recoverable(m, 0, U) = ∅

Fkr(〈m1,m2〉, U) = Fkr(m1, U) ∪ Fkr(m2, U)

Fkr(k, U) = {k} ∪ U

Fkr({|m|}
r
k, U) = Fkr(m,U), if k ∈ U ;

Fkr(m,U) = U, in any other case.

8

algorithm Crecoverable(µ) :
Gets all the keys in the bit
string µ with high probability.
U ′ := ∅
do:

U := U ′

U ′ := Ckr(µ, U)
until U = U ′

return U

Ckr(κ, U) = {κ} ∪ U

Ckr(µ1µ2, U) = Ckr(µ1, U) ∪ Ckr(µ2, U)

Ckr(ǫ, U) = Ckr(µ, U), if ∃!κ ∈ U s.t.

D(ǫ, κ) = µ 6= ⊥;

Ckr(µ, U) = U, otherwise.

The following lemma also from [MW04] shows the relation between these two func-
tions.

Lemma 5.1 Let Π = 〈K, E ,D〉 be a confusion free encryption scheme and let m ∈ Msg.
Then

P[τ
$

← Coins(m);Crecoverable([[m]]
τ
) 6= [[recoverable(m)]]

τ
]

is a negligible function of η.

Proof. We refer the reader to the original paper for a complete proof of this lemma. The
hashes that appear in our logic have no influence at all. ⊓⊔

In our extended logic, due to the hashes, it is not true any more that the only useful
information for an adversary are the keys. Any message an adversary can learn might
be the pre-image of a certain hash value. Therefore, we need to be able to compute
the complete closure of a given message (or bit string). The function aclosure below
computes the messages in the algebraic closure of a message, up to a certain size. The
function bclosure is its computational counterpart. Next we show that the proposed
functions behave similarly with high probability.

aclosure(m, d) = aclosure(m, d, recoverable(m))

aclosure(m, d, U) = asynth(aanalz(m,U), d)

aanalz(〈m1,m2〉, U) = aanalz(m1, U) ∪ aanalz(m2, U)

aanalz({|m|}rk, U) = {{|m|}rk} ∪ aanalz(m,U), if k ∈ U ;

aanalz(m,U) = {m}, in any other case.

bclosure(µ, d) = bclosure(µ, d,Crecoverable(µ))

bclosure(µ, d, U) = bsynth(banalz(µ, U), d)

banalz(µ1µ2, U) = banalz(µ1, U) ∪ banalz(µ2, U)

banalz(ǫ, U) = {ǫ} ∪ banalz(µ, U), if ∃!κ ∈ Us.t.D(ǫ, κ) = µ 6= ⊥;

banalz(µ, U) = {µ}, in any other case.

9

algorithm asynth(U, d) :
Generates all possible vectors of
messages in U of size up to d.
U1 = U

for i = 2 to d
Ui := ∅
for each m ∈ U
for each v ∈ Ui−1

Ui := Ui ∪ {〈m, v〉}
return Ud

algorithm bsynth(U, d) :
Generates all possible vectors of
bit strings in U of size up to d.
U1 = U

for i = 2 to d
Ui := ∅
for each µ ∈ U

for each ω ∈ Ui−1

Ui := Ui ∪ {µω}
return Ud

Lemma 5.2 Let m ∈Msg, τ ∈ Coins(m), and T ⊆ Keys. Then the probability

P

[

τ
$

← Coins(m); banalz([[m]]
τ
, [[T]]

τ
) 6= [[aanalz(m,T)]]

τ
]

is a negligible function of η.

Proof. The proof follows by induction on the structure of m. The only non-trivial case
is m = {|m1|}

r
k.

• If k ∈ T , then [[k]]
τ ∈ [[T]]

τ
. Next

P[banalz([[m]]
τ
, [[T]]

τ
) = [[{m} ∪ aanalz(m1, T)]]

τ
]

≥ P[[[m]]τ ∪ banalz([[m1]]
τ
, [[T]]τ) = [[{m} ∪ aanalz(m1, T)]]

τ

∧∀κ ∈ [[T \ k]]τ : D([[m]], κ) = ⊥]

≥ P[banalz([[m1]]
τ
, [[T]]

τ
) = [[aanalz(m1, T)]]

τ

∧∀κ ∈ [[T \ k]]τ : D([[m]]
τ
, κ) = ⊥]

≥ 1− (P[banalz([[m1]]
τ
, [[T]]

τ
) 6= [[aanalz(m1, T)]]

τ

∨∃κ ∈ [[T \ k]]τ : D([[m]]τ , κ) 6= ⊥])

≥ 1− (P[banalz([[m1]]
τ
, [[T]]τ) 6= [[aanalz(m1, T)]]

τ]

+P[∃κ ∈ [[T \ k]]τ : D([[m]]
τ
, κ) 6= ⊥])

≥ 1− (ε1(η) +
∑

κ∈[[T\k]]τ

P[D([[m]]
τ
, κ) 6= ⊥])

≥ 1− (ε1(η) + ε2(η) · (|T | − 1)) ,

where ε1, ε2 are the negligible functions from the induction hypothesis and confusion
freeness respectively.

• If k 6∈ T , then [[k]]
τ 6∈ [[T]]

τ
. Next

P[banalz([[m]]
τ
, [[T]]

τ
) = [[{m}]]τ]

≥ P [[[m]]τ = [[{m}]]τ ∧ ∀κ ∈ [[T]]τ : D([[m]]τ , κ) = ⊥]

= 1− P [∃κ ∈ [[T]]
τ
: D([[m]]

τ
, κ) = ⊥]

≥ 1−
∑

κ∈[[T]]

P [D([[m]]
τ
, κ) = ⊥]

≥ 1− ε(η) · |T | ,

where ε is a negligible function due to confusion freeness. ⊓⊔

10

The following is an extended version of the function psp from [MW04], which is the
computational counterpart of pattern. This function takes a bit string as an argument
and tries to recover the pattern associated to it. This means that given as input a sample
from [[m]], the function outputs (a renaming of) pattern(m) with high probability. As
in [MW04] we let f be an arbitrary (but fixed) injective function that associates an
identifier (i.e., an element of Nonce ∪ Key ∪ Const) to each bit string of primitive type
(i.e., ν, κ, ς).

psp(µ1µ2, U) = 〈psp(µ1, U), psp(µ2, U)〉

psp(ǫ, U) =

{

{|psp(D(ǫ), U)|}
R(ǫ)
f(κ) , if ∃!κ ∈ U s.t. D(ǫ, κ) 6= ⊥;

�
R(ǫ), otherwise.

psp(ψ,U) =

{

hR(ψ)(psp(µ, U)), if ∃!µ ∈ U s.t. V(µ, ψ) = 1;

⊠
R(ψ), otherwise.

psp(µ, U) = f(µ) in any other case.

Theorem 5.3 Let m ∈ Msg, τ ∈ Coins(m), and U be a finite subset of Msg. Then the
probability

P

[

τ
$

← Coins(m); psp([[m]]τ , [[U]]τ) 6≡ pattern(m,U)
]

is a negligible function of η.

Proof. The proof follows by induction on the structure of m. We only show here the
case m = hr(m1). For the remaining cases, the proof follows similarly to the one in the
original Micciancio-Warinschi [MW04] paper and therefore we refer the reader to it.
• If m1 ∈ U then

P[τ
$
← Coins(m); psp([[m]]

τ
, [[U]]

τ
) ≡ pattern(m,U)]

≥ P[τ
$
← Coins(m); psp([[m1]]

τ
, [[U]]τ) ≡ pattern(m1, U)

∧∀µ ∈ [[U \ {m1}]]
τ
: V(µ, [[m]]

τ
) = 0]

= 1− P[τ
$
← Coins(m); psp([[m1]]

τ
, [[U]]

τ
) 6≡ pattern(m1, U)

∨∃µ ∈ [[U \ {m1}]]
τ
: V(µ, [[m]]

τ
) = 1]

≥ 1− (P
[

τ
$
← Coins(m); psp([[m1]]

τ
, [[U]]

τ
) 6≡ pattern(m1, U)

]

+P

[

τ
$
← Coins(m); ∃µ ∈ [[U \ {m1}]]

τ : V(µ, [[m]]τ) = 1
]

)

≥ 1− (ε1(η) + ε2(η)) ,

where ε1, ε2 are the negligible functions from the induction hypothesis and collision
resistance respectively.
• If m1 6∈ U then

P[τ
$
← Coins(m);psp([[m]]

τ
, [[U]]

τ
) ≡ pattern(m,U)]

= P[psp([[m]]τ , [[U]]τ) ≡ ⊠
r] = P[∀µ ∈ [[U]]τ : V(µ, [[m]]τ) = 0]

11

therefore

P[τ
$
← Coins(m);psp([[m]]τ , [[U]]τ) 6≡ pattern(m,U)]

= P[∃µ ∈ [[U]]
τ
: V(µ, [[m]]

τ
) = 1] ≤ ε(η) ,

where ε is a negligible function due to collision resistance. ⊓⊔

Lemma 5.4 Let m ∈Msg and d ∈ N. Then the probability

P

[

µ
$

← [[m]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m, aclosure(m, d))
]

is a negligible function of η.

Proof.

P
[

µ
$
← [[m]]; psp(µ, bclosure(µ, d)) ≡ pattern(m, aclosure(m, d))

]

≥ P
[

µ
$
← [[m]]; psp(µ, bclosure(µ, d)) ≡ pattern(m, aclosure(m, d))

∧ bclosure(µ, d) ≡ aclosure(m, d)
]

≥ 1−
(

P
[

µ
$
← [[m]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m, aclosure(m, d))

]

+P
[

µ
$
← [[m]]; bclosure(µ, d) 6≡ aclosure(m, d)

]

)

≥ 1− (ε1(η) + ε2(η)) ,

where ε1, ε2 are negligible functions due to Theorem 5.3 and Lemma 5.2 respectively. ⊓⊔

Theorem 5.5 (Completeness) Let m1 and m2 be acyclic messages. Then [[m1]] ≡
[[m2]] =⇒ m1

∼= m2.

Proof. Let us assume that m1 6∼= m2. Now we show that [[m1]] 6≡ [[m2]] by building a
distinguisher D.

algorithm D(µ) :
d := max(|m1|, |m2|)
if psp(µ, bclosure(µ, d)) ≡ pattern(m1)

return 1
else

return 0

Next we show that AdvD(η) = |P[µ
$
← [[m1]];D(µ) = 1]− P[µ

$
← [[m2]];D(µ) = 1]| is not

negligible. On the one hand

P[µ
$
← [[m1]];D(µ) = 1] = P[µ

$
← [[m1]]; psp(µ, bclosure(µ, d)) ≡ pattern(m1)]

= 1− P[µ
$
← [[m1]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m1)]

≥ 1− ε1(η) ,

where ε1 is the negligible function from Lemma 5.4. Note that pattern(m1) = pattern(m1,

aclosure(m1, |m1|)). On the other hand

P[µ
$
← [[m2]];D(µ) = 1] = P[µ

$
← [[m2]]; psp(µ, bclosure(µ, d)) ≡ pattern(m1)]

≤ P[µ
$
← [[m2]]; psp(µ, bclosure(µ, d)) 6≡ pattern(m2)]

≤ ε2(η) ,

12

where ε2 is the negligible function from Lemma 5.4. Therefore, AdvD(η) = 1− ε1(η) −
ε2(η), which is not negligible. ⊓⊔

6 Conclusions

In this paper we have studied an extension of the Abadi-Rogaway logic with hashes.
Together with the results from [GvR06c] we have shown that it is possible to create a
sound and complete interpretation of formal hashes in the computational world. Under
standard assumptions on hashes (pre-image resistance and collision resistance), the al-
gebraic world does not perfectly match the computational world. However, our results
show that it is still possible to achieve this perfect match using Canetti’s oracle hashing.

References

[AJ01] Mart́ın Abadi and Jan Jrjens. Formal eavesdropping and its computational interpre-
tation. In Naoki Kobayashi and Benjamin C. Pierce, editors, Proceedings of the 4th
International Symposium on Theoretical Aspects of Computer Software (TACS’01),
volume 2215 of Lecture Notes in Computer Science, pages 82–94. Springer, 2001.

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology, 15(2):103–
127, 2002.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Philip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations of
Computer Science (FOCS’97), pages 394–405. IEEE, 1997.

[BPW06] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the BRSIM/UC
soundness of dolev-yao models with hashes. In Dieter Gollmann, Jan Meier, and
Andrei Sabelfeld, editors, Proceedings of the 11th European Symposium on Research
in Computer Security (ESORICS 2006), volume 4189 of Lecture Notes in Computer
Science, pages 404–423. Springer, 2006.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all par-
tial information. In Burt Kaliski, editor, Advances in Cryptology, 17th Annual In-
ternational Cryptology Conference (CRYPTO’97), volume 1294 of Lecture Notes in
Computer Science, pages 455–469. Springer, 1997.

[CMR98] Ran Canetti, Danielle Micciancio, and Omer Reingold. Perfectly one-way probabilis-
tic hash functions. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing (STOC’98), pages 131–140. ACM, 1998.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography. 2001. http:

//www-cse.ucsd.edu/~mihir/papers/gb.html.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge University
Press, 2001.

[GvR06a] Flavio D. Garcia and Peter van Rossum. Sound and complete computational inter-
pretation of symbolic hashes in the standard model. In Veronique Cortier and Steve
Kremer, editors, Workshop of Formal and Computational Cryptography (FCC 2006),
2006.

[GvR06b] Flavio D. Garcia and Peter van Rossum. Sound computational interpretation
of formal hashes. Technical Report ICIS-R06001, Nijmegen Institute for Com-
puting and Information Sciences, http://www.cs.ru.nl/research/reports/info/
ICIS-R06001.html, 2006.

13

[GvR06c] Flavio D. Garcia and Peter van Rossum. Sound computational interpretation of
symbolic hashes in the standard model. In Hiroshi Yoshiura, Kouichi Sakurai, Kai
Rannenberg, Yuko Murayama, and Shinichi Kawamura, editors, Advances in Infor-
mation and Computer Security. International Workshop on Security (IWSEC2006),
volume 4266 of Lecture Notes in Computer Science, pages 33–47, Kyoto, Japan, Oct
23-24 2006. Springer Verlag.

[Her05] Jonathan Herzog. A computational interpretation of Dolev-Yao adversaries. Theo-
retical Computer Science, 340(1):57–81, 2005.

[MW04] Daniele Micciancio and Bogdan Warinschi. Completeness theorems of the Abadi-
Rogaway logic of encrypted expressions. Journal of Computer Security, 12(1):99–129,
2004.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of
secure reactive systems. In Proceedings of the 7th ACM CCS, pages 245–254, 2000.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Defi-
nitions, implications, and separations for preimage resistance, second-preimage resis-
tance, and collision resistance. In Bimal Roy and Willi Meier, editors, Fast Software
Encryption: 11th International Workshop (FSE’04), volume 3017 of Lecture Notes in
Computer Science, pages 371–388. Springer, 2004.

14

