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Abstract. This paper aims to find a proper security notion for commit-
ment schemes to give a sound computational interpretation of symbolic
commitments. We introduce an indistinguishability based security defini-
tion of commitment schemes that is equivalent to non-malleability with
respect to commitment. Then, we give a construction using tag-based en-
cryption and one-time signatures that is provably secure assuming the ex-
istence of trapdoor permutations. Finally, we apply this new machinery
to give a sound interpretation of symbolic commitments in the Dolev-Yao
model while considering active adversaries.

1 Introduction

Over the last few decades, two main stream approaches have been developed for
the analysis of security protocols. On the one hand, the cryptographic approach
considers an arbitrary computationally-bound adversary that interacts with honest
participants and tries to break a security goal. This model is satisfactory as it
deals with every efficient attacker. On the other hand, the symbolic or Dolev-Yao
approach idealizes the security properties of the cryptographic primitives, which
are axiomatized in a logic. Moreover, the capabilities of the adversary are also
specified by a set of inference rules. This approach is appealing because there are
automated techniques for the verification of some security properties.

Abadi and Rogaway in [AR02] pioneered the idea of relating these two models
and showed that, under appropriate assumptions on the underlying cryptographic
primitives, a simple language of encrypted expressions is sound with respect to the
computational model in the case of passive adversaries.

Such a relation maps symbolic messages m to distributions over bitstrings [[m]].
This map then should relate messages that are observationally equivalent in the
symbolic world to indistinguishable distributions over bitstrings. Such a map allows
one to use formal methods, possibly even automated, to reason about security
properties of protocols and have those reasonings be valid also in the standard
computational model.
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Several extensions to the original Abadi-Rogaway logic [AR02] have been pro-
posed in the literature. These extensions deal with public key encryption [MW04,
Her05], key cycles [ABHS05], partial information leakage [ABS05], active instead
of passive adversaries [MW04,JLM05], and more realistic security notions [AW05].
Other extensions add new primitives to the logic such as bilinear pairings [Maz07],
modular exponentiation [BLMW07] and hash functions [CKKW06,GvR06,GvR08].
There are also frameworks dealing with generic equational theories [BCK05,ABW06,
KM07]. So far there is no work in the literature, that we are aware of, that relates
these two approaches for commitment schemes.

Commitment schemes are fundamental cryptographic primitives and are used
in protocols like zero-knowledge proofs [GMW91], contract signing [EGL85], and
can be used for bidding protocols. A commitment consists of two phases: the com-
mitment phase where the principals commit to a message without revealing any
information; and the opening phase where the principals reveal the message and
it is possible to verify that this message corresponds to the value committed to
during the commitment phase. After the commitment phase it should be infeasible
to open the commitment to a different value than the one committed. This prop-
erty is called binding. In the context of bidding protocols, non-malleability is also
a desirable property. This means that an adversary cannot modify an intercepted
commitment, say into a commitment to a slightly higher bid.

Our contribution. The first objective of this paper is to find sufficient security
assumptions to give a sound computational interpretation of commitments schemes
in the Dolev-Yao model, under active adversaries. Pursuing that objective we pro-
pose a new indistinguishability-based security definition for commitment schemes
in the presence of adaptive adversaries. Then we give a novel generic construction
for a non-malleable commitment scheme based on one-way trapdoor permutations.
This construction is secure with respect to our new definition and has some ad-
ditional properties such as being non-interactive, perfectly binding and reusable,
which makes it of independent interest. This new definition allows us to prove
soundness of the Dolev-Yao model extended with commitments, following the di-
rections of Micciancio and Warinschi [MW04].

Overview. Section 3 introduces basic notation and definitions from the literature.
Section 4 elaborates on different definitions of non-malleability for commitment
schemes and discusses the relations among them. In Section 5 we propose a new
commitment scheme and we give a security proof. Section 2 describes symbolic
protocol executions, its computational counterparts and the map between them
and also states the soundness result. Finally in Section 7 there are some concluding
remarks.

2 Symbolic Protocols

We are going to apply this theory to give sound computational interpretation to
symbolic commitments. Recall from the introduction that the symbolic approach
to protocol verification deals with symbolic or algebraic messages and idealized
cryptographic primitives. In this setting the adversary is unbounded in running



time and has full control over the communication media but is completely incapable
of breaking the underlying cryptographic primitives.

We now describe the message space and the closure operator. These messages
are used to formally describe cryptographic protocols. The closure represents the
knowledge that can be extracted from a message, and it is used to define what valid
algebraic protocol runs are. Intuitively a protocol run is valid if every message sent
by a principal can be deduced from its knowledge except maybe for some fresh
randomness. Much of this is standard (see, e.g., [AR02,MW04,MP05, GvR06]),
except that we model commitments and decommitments as well as encryption.

Definition 2.1. Let Nonce be an infinite set of nonce symbols, Const a finite set
of constant symbols, Key an infinite set of key symbols, andRandom an infinite set
of randomness labels. Nonces are denoted by n, n′, . . . , constants by c, c′, . . . , keys
by k, k′, . . . , and randomness labels by r, r′, . . . . Using these building blocks, mes-
sages are constructed using symbolic encryption, commitments, decommitments,
and pairing operations:

Msg ∋ m := c | n | {|m|}rk | com
r(m) | decr(m) | 〈m,m〉.

A message of the form {|m|}rk is called an encryption and the set of all such messages
is denoted by Enc. Similarly, messages of the form comr(m) are called commitments
and the set of all these messages is denoted by Com. The messages of the form
decr(m) are called decommitments and the set of all these messages is denoted
by Dec. In a protocol run decr(m) is a valid decommitment of comr′(m′) only if
m = m′ and r = r′. We say that elements in Const∪Nonce∪Key are primitive
and we denote this set by Prim. For a public key k we denote its associated private
key as k−1.

The closure of a set U of messages is the set of all messages that can be con-
structed from U using tupling, detupling, commitment, decommitment, and en-
cryption and decryption. It represents the information an adversary could deduce
knowing U . Note that, due to secrecy of the commitment scheme, knowing comr(m)
does not provide an adversary with any information about m.

Definition 2.2 (Closure). Let U be a set of messages. The closure of U , denoted
by U , is the smallest set of messages satisfying: 1. Const ⊆ U ; 2. U ⊆ U ;
3. m,m′ ∈ U =⇒ 〈m,m′〉 ∈ U ; 4. m ∈ U ∧ k ∈ U =⇒ {|m|}rk ∈ U ; 5. {|m|}rk ∈
U ∧ k−1 ∈ U =⇒ m ∈ U ; 6. m ∈ U =⇒ comr(m), decr(m) ∈ U ; 7. decr(m) ∈
U =⇒ m ∈ U ; 8. 〈m,m′〉 ∈ U =⇒ m,m′ ∈ U .

Next we need to find the right security notions to give sound computational
interpretation to symbolic encryption and commitments.

3 Computational Setup

This section introduces syntaxis and security definitions for different cryptographic
primitives. Much of this is standard, we refer the reader to [GM84,RS92] and [NY90]
for a thorough explanation. Some of this primitives will be used to interpret alge-
braic operations and some of them are used as building blocks for our construction
of Section 5.



3.1 Commitment Schemes

Definition 3.1. A commitment scheme is a triple Ω = (TTP, Snd,Rcv) of prob-
abilistic polynomial-time algorithms. TTP, the trusted third party, takes as input
the security parameter 1η and produces a common reference string σ. We require
that |σ| ≥ p(η) for some non-constant polynomial p. Snd, the sender, takes as in-
put σ and a message m and produces a commitment com to this message and a
corresponding decommitment dec. Rcv, the receiver, takes as input σ, com, and dec
and produces a message or ⊥.

MeaningfulnessΩ(A):
σ ← TTP(1η)
m← A(σ)
(com, dec)← Snd(σ,m)
m1 ← Rcv(σ, com, dec)
return m 6= m1

Secrecy
TTP,Snd(A1, A2):

σ ← TTP(1η)
m0,m1, s← A1(σ)
b← {0, 1}
(com, dec)← Snd(σ,mb)
b′ ← A2(s, com)
return b = b′

Binding
TTP,Rcv(A):

σ ← TTP(1η)
(com, dec1, dec2)← A(σ)
m1 ← Rcv(σ, com, dec1)
m2 ← Rcv(σ, com, dec2)
return m1 6= ⊥ 6= m2

∧ m1 6= m2

The following three conditions must hold.

1. For all probabilistic polynomial-time algorithms A, the probability
P[MeaningfullnessΩ(A)] is a negligible function of η.

2. For all probabilistic polynomial-time algorithms (A1, A2), the advantage
|P[SecrecyTTP,Snd(A1, A2)]− 1/2| is a negligible function of η.

3. For all probabilistic polynomial-time algorithms A, the probability
P[BindingTTP,Rcv(A)] is a negligible function of η.

Definition 3.2. A commitment scheme is said to be perfectly binding if for all
unbounded algorithms A, the probability P[BindingTTP,Rcv(A)] is zero.

Definition 3.3. A commitment scheme is said to be perfectly hiding if for all
unbounded algorithms (A0, A1), |P[SecrecyTTP,Snd(A1, A2)]− 1/2| is zero.

3.2 Encryption Schemes

Definition 3.4. An encryption scheme is a triple Π = (K, E ,D) of probabilistic
polynomial-time algorithms. K takes as input the security parameter 1η and pro-
duces a key pair (pk, sk) where pk is the public encryption key and sk is the private
decryption key. E takes as input a public key pk and a plaintext m and outputs a
ciphertext. D takes as input a private key sk and a ciphertext and outputs a plain-
text or ⊥. It is required that P[(pk, sk) ← K(1η); c ← E(pk,m);m′ ← D(sk, c) :
m = m′] = 1.

IND-CCAΠ(A0, A1) :
(pk, sk)← K(1η)
m0, m1, s← AD

0 (pk)
b← {0, 1}
c← E(pk,mb)
b′ ← AD

1 (s, c)
return b = b′



Definition 3.5. An encryption scheme Π = (K, E ,D) is said to be IND-CCA se-
cure if for all probabilistic polynomial-time adversaries A = (A0, A1) the advantage
of A, defined as |P[IND-CCAΠ(A0, A1)]− 1/2|, is a negligible function of η. This
adversary has access to a decryption oracle D that on input c′ outputs D(sk, c′)
with the only restriction that c 6= c′.

3.3 One-time Signatures

Definition 3.6. A signature scheme is a triple (Gen, Sign,Vrfy) of probabilistic
polynomial-time algorithms. Gen takes as input the security parameter 1

η and
produces a key pair (vk, sk) where vk is the signature verification key and sk is the
secret signing key. Sign takes as input sk and a messagem and produces a signature
s of m. Vrfy takes as input vk, a message m and a signature s and outputs whether
or not s is a valid signature of m.

OTSΣ(A0, A1) :
(vk, sk)← Gen(1η)
m,s← A0(vk, 1

η)
σ ← Sign(sk,m)
m′, σ′ ← A1(s, σ)
return σ 6= σ′ ∧ Vrfy(vk, (m′, σ′))

Definition 3.7. A signature scheme Σ = (Gen, Sign,Vrfy) is a strong, one-time
signature scheme if the success probability of any probabilistic polynomial-time ad-
versary (A0, A1) in the game OTSΣ(A0, A1) is negligible in the security parameter
η.

3.4 Tag-based Encryption

Definition 3.8. A tag-based encryption scheme (TBE) handling tags of length ℓ
(where ℓ is a polynomially-bounded function) is a triple of probabilistic polynomial-
time algorithms (KeyGen,Enc,Dec). KeyGen takes a security parameter 1η and
returns a public key pk and secret key sk. The public key pk includes the security
parameter 1η and ℓ(η); as well as the description of sets M,R, C, which denote
the set of messages, randomness and ciphertexts respectively. These descriptions
might depend on the public key pk. Enc takes as inputs pk, a tag t ∈ {0, 1}ℓ and
m ∈ M. It returns a ciphertext c ∈ C. Dec takes as inputs the secret key sk, a
tag t and c ∈ C, and returns m ∈ M or ⊥ when c is not a legitimate ciphertext.
For the sake of consistency, these algorithms must satisfy Dec(sk, t, c) = m for all
t ∈ {0, 1}ℓ, m ∈ M, where c = Enc(pk, t,m).

Definition 3.9. Let E = (KeyGen,Enc,Dec) be a TBE scheme. We say E is IND-
TBE-CCA secure if for any 3-tuple of PPT oracle algorithms (A0, A1, A2) and any
polynomially-bounded function ℓ the advantage in the following game is negligible
in the security parameter 1η:

A0(1
η, ℓ(η)) outputs a target tag t. KeyGen(1η) outputs (pk, sk) and the ad-

versary is given pk. Then the adversary A1 may ask polynomially-many queries
to a decryption oracle D(t′, c′) = Dec(sk, t′, c′) for pairs tag-ciphertext (t′, c′) of
its choice, with the restriction t 6= t′. At some point, A1 outputs two equal length



messagesm0,m1. A bit b← {0, 1} is chosen at random and the adversary is given a
challenge ciphertext c← Enc(pk, t,mb). A2 may continue asking the decryption or-
acle for pairs tag-ciphertext (t′, c′) of its choice, with the restriction t 6= t′. Finally,
A2 outputs a guess b′.

IND-TBE-CCA E(A0, A1, A2) :
t, s1 ← A0(1

η, ℓ(η))
(pk, sk)← KeyGen(1η)
m0, m1, s2 ← AD

1 (s1,pk)
b← {0, 1}
c← Enc(pk, t,mb)
b′ ← AD

2 (s2, c)
return b = b′

We define the advantage of A as |P[IND-TBE-CCA(A)]− 1/2|.

3.5 Interpretation

Suppose we have an encryption scheme Π , a commitment scheme Ω and a function
that maps symbolic constants to constant bitstrings. Then we can define a mapping
[[·]] from algebraic messages m ∈ Msg to distributions over bitstrings [[m]] ∈ Str.
This interpretation maps nonces to random bitstrings of length η; encryptions are
interpreted by running the encryption algorithm E and for interpreting commit-
ments and decommitments we use the commit algorithm Snd.

In order to achieve sound interpretation we will explore the security require-
ments on these cryptographic primitives. For the case of encryption it is satisfactory
to use any IND-CCA encryption scheme as shown in [MW04]. For the case of com-
mitments, using standard security definitions is not straightforward as they are
not strong enough nor indistinguishability based. To achieve sound interpretation
of the idealized Dolev-Yao model, throughout the next section we elaborate on a
convenient security definition for commitment schemes.

4 Definitions of Non-malleability

As noticed by Fischlin and Fischlin [FF00], there are two different versions of non-
malleability for commitment schemes, namely: NM with respect to opening (NMO)
and NM with respect to commitment (NMC). NMC was the version originally pro-
posed by Dolev, Dwork and Naor in [DDN91]. It means that given a commitment
to a message m, the adversary is unable to build a different commitment to m′,
with m related to m′. This version of non-malleability is appropriate while consid-
ering perfectly binding commitments and only makes sense for schemes that are
not perfectly hiding.

The other version NMO, seemingly weaker, means that an adversary that is first
given a commitment to m and on a second stage its decommitment, is unable to
find a different commitment-decommitment pair that decommits to a message m′

related tom. This notion was studied by Di Crescenzo, Ishai and Ostrovsky [CIO98]
and later by Di Crescenzo, Katz, Ostrovsky and Smith [CKOS01]. Intuitively a
commitment scheme is non-malleable if the adversary can do no better than a



simulator which has no information at all about the message that was committed
to. Next we recall their definition.

NMOΩ(A1, A2, D,R): ;
σ ← TTP(1η) ;
m1 ← D ;
com1, dec1 ← Snd(σ,m1) ;
com2 ← A1(σ, com1) ;
dec2 ← A2(σ, com1, com2, dec1) ;
m2 ← Rcv(σ, com2, dec2) ;
return com1 6= com2 ∧ R(m1, m2) ;

SIM(S,D,R): ;
m1 ← D ;
m2 ← S(1η, D) ;
return R(m1,m2) ;

Definition 4.1 (Non-malleability [CIO98,CKOS01]). Let Ω = (TTP, Snd,Rcv) be
a commitment scheme. Ω is called non-malleable if for all PPT adversaries (A1, A2)
there is a PPT simulator S such that for all distributions D and all relations R,

P[NMOΩ(A1, A2, D,R)]− P[SIM(S,D,R)]

is a negligible function of η.

Remark 4.2. To prevent that the adversary trivially wins, by refusing to decom-
mit, the following restriction over the relation R is imposed: for all messages m,
we have R(m,⊥) = 0.

4.1 NMC-CCA: Non-malleability Against Chosen Commitment At-

tacks

The previous definition deals with non-malleability with respect to opening. For the
relation between symbolic and computational cryptography we need the stronger
notion of non-malleability with respect to commitment. Intuitively, this is because
in the algebraic setting comr(m′) cannot be deduced from comr(m), with m′ some-
how related to m. Therefore we adapt the NMO definition to non-malleability with
respect to commitment and we strengthen it by incorporating active adaptive secu-
rity, allowing the adversary to mount chosen commitment attacks (CCA in short).
Specifically, we empower the adversary with access to a decommitment oracleD. To
do so, from now on, we restrict our attention to non-interactive, perfectly binding
trapdoor commitment schemes. The oracle D has access to the trapdoor informa-
tion. It takes as argument a commitment c with the restriction that c is not equal
to the challenge commitment com1. Then if the commitment c has been correctly
generated, the oracle returns a decommitment d which opens c, and otherwise it
outputs ⊥.

NMC-CCAΩ(A0, A1, R): ;
σ ← TTP(1η) ;

D, s1 ← AD
0 (σ) ;

m1 ← D(σ) ;
com1, dec1 ← Snd(σ,m1) ;

com2, sr ← AD
1 (s1, com1) ;

dec2 ← D(com2) ;
m2 ← Rcv(σ, com2, dec2) ;
return com1 6= com2 ∧ R(sr,m1,m2) ;

SIM-CCATTP(S0, S1, R): ;
σ ← TTP(1η) ;
D, s1 ← S0(σ) ;
m1 ← D(σ) ;
;
com2, sr ← S1(s1) ;
dec2 ← D(com2) ;
m2 ← Rcv(σ, com2, dec2) ;
return R(sr,m1,m2) ;



Definition 4.3 (NMC-CCA). Let Ω = (TTP, Snd,Rcv) be a commitment scheme.
Ω is called NMC-CCA secure if for all PPT adversaries (A0, A1) there is a PPT
simulator (S0, S1) such that for all relations R (with the same restriction as in 4.2),

P[NMC-CCAΩ(A0, A1, R)]− P[SIM-CCATTP(S0, S1, R)]

is a negligible function of η.

4.2 An Indistinguishability Based Definition

Next we introduce an equivalent formulation of NMC-CCA that is more convenient
to prove soundness of the Dolev-Yao model with respect to commitment schemes.

IND-COM-CCAb(A0, A1): ;
σ ← TTP(1η) ;

m0,m1, s1 ← AD
0 (σ) ;

com1, dec1 ← Snd(σ,mb) ;

b′ ← AD
1 (s1, com1) ;

return b′ ;

Definition 4.4 (IND-COM-CCA). Let Ω = (TTP, Snd,Rcv) be a commitment
scheme. Ω is said to be IND-COM-CCA secure if for all PPT adversaries (A0, A1)

P[ IND-COM-CCA1(A
D

0
, AD

1
) = 1]− P[ IND-COM-CCA0(A

D

0
, AD

1
) = 1]

is a negligible function of η.

Next we show that NMC-CCA and IND-COM-CCA are equivalent. We discuss
it briefly as it is basically the proof that NM-CCA and IND-CCA are equivalent,
adapted to commitment schemes.

Theorem 4.5. Let Ω = (TTP, Snd,Rcv) be a commitment scheme. Then Ω is
IND-COM-CCA secure if and only if Ω is NMC-CCA secure.

Proof. (IND-COM-CCA ⇐ NMC-CCA) Let (B0, B1) be an adversary for IND-
COM-CCA. Then we build the following adversary (A0, A1) against NMC-CCA.

Algorithm AD
0 (σ) :

m0, m1, s1 ← BD
0 (σ)

D← U({m0,m1})
return D, (σ,m0,m1, s1)

Algorithm AD
1 ((σ,m0,m1, s1), c1) :

b← BD
1 (s1, c1)

c2 ← Snd(σ,mb)
return c2, ǫ

where U is the uniform distribution. Now take the relation R(sr,m1,m2) as m1

equal to m2. It should be clear, after unfolding (A0, A1) in the NMC-CCA game,
that this adversary has the same advantage that (B0, B1) has against IND-COM-
CCA.

(IND-COM-CCA ⇒ NMC-CCA) Let (A0, A1) be an adversary for NMC-CCA.
Then we build the following adversary (B0, B1) against IND-COM-CCA.

Algorithm BD
0 (σ) :

D, s1 ← AD
0 (σ)

m0,m1 ← D

return m0,m1, (σ,m0,m1, s1)

Algorithm BD
1 ((σ,m0,m1, s1), c1) :

c2 ← AD
1 (s1, c1)

m← D(c2)
if m = m1 then return 1
else return 0



Again, just by unfolding these adversaries in the IND-COM-CCA game, it is easy to
verify that they have the same advantage that (A0, A1) has against NMC-CCA.

It remains to show that such a security notion for a commitment scheme is
achievable. In the next section we give a practical construction that achieves IND-
COM-CCA security.

5 The Construction

We now propose a new construction for IND-COM-CCA that is computationally
hiding, perfectly binding, reusable, non-interactive, non-malleable under adaptive
adversaries, and provably secure under the assumption that trapdoor permutations
exist.

Next we outline the idea of our construction. As pointed out by Di Crescenzo,
Katz, Ostrovsky and Smith [CKOS01], an IND-CCA secure public key encryp-
tion scheme can be converted into a perfectly binding non-malleable commitment
scheme. Let Π = (KeyGen,Enc,Dec) be an indistinguishable against adaptive
chosen-ciphertext attacks secure public key encryption scheme. The idea is to com-
mit to a message m by encrypting it using random coins r; commitment is set to
be the ciphertext c = Enc(pk,m; r); de-commitment is set to be the pair (m, r);
finally the opening algorithm takes (c,m, r) and checks whether c = Enc(pk,m; r).
When trying to directly use this construction to instantiate an IND-COM-CCA
commitment scheme one might not be able to simulate the de-commitment oracle.
The reason is that given a ciphertext/commitment c, one recovers the purported
embedded message m by using the decryption algorithm, but not necessarily the
randomness r. One way to break through this situation is to include in the commit-
ment a second ciphertext c′ = Enc(pk′, r; r′) encrypting the randomness r used in
the first ciphertext c = Enc(pk,m; r). This is the key idea of our construction. We
additionally use one-time signatures and this together with tag-based encryption
schemes ensure the de-commitment oracle does not leak vital information.

Let Π = (KeyGen,Enc,Dec) be a tag based encryption scheme and let Σ =
(Gen, Sign,Vrfy) be a signature scheme. Define (TTP, Snd,Rcv) as follows:

– TTP runs KeyGen(1η) twice to obtain (pk1, sk1) and (pk2, sk2). The common
reference string includes pk1, pk2.

– To commit to a message m, the sender Snd computes and outputs the commit-
ment C = (vk, c1, c2, s) where c1 = Enc(pk1, vk,m; r1), c2 = Enc(pk2, vk, r1; r2),
with r1, r2 ←R, (vk, sk)← Gen(1η) and s← Sign(sk, (c1, c2)). The decommit-
ment is set to be (m, r1).

– To de-commit ciphertext C = (vk, c1, c2, s) using (m, r1), the receiver Rcv first
checks if the signature on (c1, c2) is correct, and afterwards whether or not
c1 = Enc(pk1, vk,m; r1).

We assume R =M.

Theorem 5.1. Assume that (KeyGen,Enc,Dec) is an IND-TBE-CCA secure tag
based encryption scheme and that (Gen, Sign,Vrfy) is a one-time strongly unforge-
able signature scheme. Then (TTP, Snd,Rcv) is an IND-COM-CCA secure com-
mitment scheme.



Proof. We transform an adversary A against the IND-COM-CCA security of the
commitment scheme into adversaries against the TBE and the OTS. Next we
will describe a sequence of games following the methodology advocated in [Sho04,
BR06]. Let Xi be the event that A learns the challenge bit b in the i-th game.

Game 0. This is the unmodified IND-COM-CCA game. Trivially, |P[X0]−1/2|
equals the advantage of A against IND-COM-CCA.

Game 1. In this game we disallow decryption queries C = (vk, c1, c2, s) s.t.
vk = vk⋆ where (vk⋆, c⋆

1
, c⋆

2
, s⋆) is the challenge commitment. Then, we get that

|P[X1] − P[X0]| is less or equal than the advantage any PPT algorithm has in
breaking the one-time strong unforgeability security of the OTS.

Game 2. Still decryption queries with vk = vk⋆ are forbidden. In this game we
use the IND-CCA security of the second instance of the TBE scheme. The compo-
nents c⋆

1
and c⋆

2
of the challenge ciphertext are changed to c⋆

1
= Enc(pk⋆

1
, vk⋆,m⋆

b ; r1),
and c⋆2 = Enc(pk⋆2, vk

⋆, r′) where r′, r1 ← R. Now, we have |P[X2]− P[X1]| is less
or equal than the advantage any PPT algorithm has in breaking the selective IND-
CCA security of the TBE.

Finally it is shown that |P[X2] − 1/2]| is bounded by the advantage any PPT
algorithm has in breaking the selective IND-CCA security of the first instance of
the TBE.

Putting everything together, we get that |P[X0] − 1/2| is bounded by the ad-
vantages in breaking the OTS scheme plus twice the advantage in breaking the
selective IND-CCA of the TBE scheme. Next we describe the concrete adversaries,

Game 0 ≈ Game 1. Assume that there is an adversary (A0, A1) that is able
to distinguish the environments of Game 0 and 1. Then we build an adversary
(B0, B1) against the one-time strong unforgeability of the signature scheme.

Algorithm B0(1
η , vk) :

pk
1
, sk1 ← KeyGen(1η)

pk
2
, sk2 ← KeyGen(1η)

m0,m1, s1 ← AD
0 (pk

1
,pk

2
)

b← {0, 1}
r1 ←R
c1 ← Enc(pk

1
, vk,mb; r1)

c2 ← Enc(pk
2
, vk, r1)

return (c1, c2), (s1||vk||c1||c2||sk1||sk2)

and B1((s1||vk||c1||c2||sk1||sk2), s) = [b′ ← AD
1 (s1, (vk, c1, c2, s))]. Calls to the de-

commitment oracle D(vk′, c′
1
, c′

2
, s′) are simulated by firstly verifying the signature

Vrfy(vk′, (c′1, c
′
2), s

′). If the verification succeeds then the oracle returns the pair
(Dec(sk1, vk

′, c′
1
),Dec(sk2, vk

′, c′
2
)) and otherwise it outputs ⊥. If the adversary

eventually performs a query D(vk′, c′
1
, c′

2
, s′) with vk′ = vk then the execution of

the adversary is aborted and B outputs ((c′1, c
′
2), s

′), thus breaking the one-time
strong unforgeability of the signature scheme.



Game 1 ≈ Game 2. Assume that there is an adversary (A0, A1) that is
able to distinguish the environments of Game 1 and 2. Then we build an adversary
(B0, B1, B2) against the IND-CCA security of the second TBE. Take B0(1

η, ℓ(η)) =
[(vk, sk) ← Gen(1η); return vk, (vk||sk)] and B1(s1, pk2) = [r′, r1 ← R; return
r′, r1, (s1||r

′||r1||pk2)] and

Algorithm B
Osk2

2
((vk||sk||r′||r1||pk2

), c2) :
pk

1
, sk1 ← KeyGen(1η)

m0,m1, s1 ← AD
0 (pk

1
, pk

2
)

b← {0, 1}
c1 ← Enc(pk

1
, vk,mb; r1)

s← Sign(sk, (c1, c2))
b′ ← AD

1 (s1, (vk, c1, c2, s))
if b = b′ then return 1
else return 0

Calls to the decommitment oracle D(vk, c1, c2, s) are simulated by firstly verifying
the signature Vrfy(vk, (c1, c2), s). If the verification succeeds then the oracle returns
(Dec(sk1, vk, c1),Osk2

(c2)) and otherwise it outputs ⊥.

Finally we show that |P[X2] − 1/2]| is bounded by the advantage any PPT
algorithm has in breaking the selective IND-CCA security of the first instance of
the TBE. Assume that there is an adversary (A0, A1) for Game 2. Then we build
an adversary (B0, B1, B2) against the IND-CCA security of the first TBE. Take
B0(1

η, ℓ(η)) = [(vk, sk)← Gen(1η); return vk, (vk||sk)] and

Algorithm B
Osk1

1
((vk||sk),pk

1
) :

pk
2
, sk2 ← KeyGen(1η)

m0, m1, s1 ← AD
0 (pk

1
,pk

2
)

return (m0,m1), (vk||sk||pk1
||s1||pk2

||sk2)

Algorithm B
Osk1

2
((vk||sk||pk

1
||s1||pk2

||sk2), c1) :
r′ ← R
c2 ← Enc(pk

2
, vk, r′)

s← Sign(sk, (c1, c2))
b′ ← AD

1 (s1, (vk, c1, c2, s))
return b′

Calls to the decommitment oracle D(vk, c1, c2, s) are simulated by firstly verifying
the signature Vrfy(vk, (c1, c2), s). If the verification succeeds then the oracle returns
(Osk1

(c1),Dec(sk2, vk, c2)) and otherwise it outputs ⊥.

6 Protocol Execution and State Traces

We now prove that it is possible to port proofs in the symbolic framework to the
computational one. First, for the sake of self-containment we describe the adversar-
ial model and the execution environment following the directions of Micciancio and
Warinschi [MW04]. We refer the reader to this paper for a thorough explanation.



The message space and the closure operator were defined in Section 2. Messages
are used to formally describe cryptographic protocols. The closure represents the
knowledge that can be extracted from a message, and is used to define what valid
algebraic protocol runs are. Intuitively a protocol run is valid if every message sent
by a principal can be deduced from its knowledge except maybe for some fresh
randomness. In this setting an adversary is in control of the communication media
and is able to interact with honest participants. Consider then an adversary that
has access to an oracle that will play the role of the honest participants. This
adversary can start new sessions of the protocol and send messages to a principal
of a given session and get the respective answer back. Formally, the adversary A
can perform one of the following queries to the execution oracle O.

1. newsession([I1 . . . In]) that takes a list of user identities Ii and returns a new
session identifier s.

2. send(s, I,m) that delivers the message m to the principal I of session s. Then
O updates I’s state and returns the answer to the adversary.

In case that the adversary performs a query that is not according to the protocol,
for the specific state of the receiver, the oracle aborts the execution of this session.

In a formal protocol, the messages exchanged are algebraic expressions from
the message algebra. A formal adversary Af will interact with the formal oracle
Of in a symbolic protocol run.

On the other hand, a computational adversary Ac is a probabilistic polynomial-
time Turing machine that operates on bitstrings. For a fixed value of the security
parameter there is a set of primitive bitstrings for constants and nonces denoted by
Primη. The set of bitstrings Msgη is build from Primη by tupling, encryptions,
commitments and decommitments. There is a set Sid of session identifiers ; a
set Uid of user identities and a set Vars of variables in the abstract protocol
description.

Let F : Sid × Uid → (Vars → Msg,N) be the state maintained by the
formal oracle Of . On input (s, I) it returns the state of principal I in session s
together with his instruction pointer. The instruction pointer indicates on which
step of the abstract protocol this principal is. Similarly, C : Sid×Uid→ (Vars→
Msgη,N) is the state maintained by the computational oracle Oc. Assume without
loss of generality that all the sessions are created at the beginning. Then, a formal
adversary Af is just a sequence of send(s, I,m) queries. We say that a formal
adversary Af is a valid Dolev-Yao adversary (Af ∈ DY) if each message he sends
to the oracle is in the closure of his initial knowledge plus the answers he gets from
the oracle Of . A protocol execution, thus, is the sequence of states F0, F1, . . . of
the formal oracle Of and is denoted by trace(Af ,O

f ). After fixing the randomness
of the adversary and that of the oracle environment to τA and τO, we can similarly
define a computational execution trace trace(Ac(τA),O

c(τO)) as the sequence of
states C0, C1, . . . of the computational oracle Oc.

Definition 6.1. We say that [[·]] : Prim→ Primη is an interpretation function if
it is injective and structure preserving (i.e., maps formal nonces to nonce bitstrings,
formal commitments to commitments and so on).



Definition 6.2. Let F = F0, F1, . . . be a formal execution trace and let C =
C0, C1, . . . be a concrete execution trace. We say that F � C if there exists an
interpretation function [[·]] such that [[F0]] = C0, [[F1]] = C1, . . . .

The following theorem shows that a computational adversary has no more power
than an algebraic adversary.

Theorem 6.3. Let (TTP, Snd,Rcv) be an IND-COM-CCA secure commitment
scheme and let (K, E ,D) be an IND-CCA secure encryption scheme. For any com-
putational adversary Ac, the probability

P[ ∃Af ∈ DY : trace(Af ,O
f ) � trace(Ac(τA),O

c(τO))]

is overwhelming. Here the probability is taken over the random choices τA of the
adversary and τO of the oracle.

Proof. First fix the randomness τA and τO. Running the computational adversary
Ac, it produces a sequence of queries/answers to/from the computational oracle.
Because we know all the trapdoor information that the oracle generates and be-
cause the adversary has to send properly typed messages, we can de-construct any
message sent into primitive terms. Choosing new algebraic terms for each distinct
primitive bitstring encountered we build a sequence of algebraic queries which con-
stitutes an algebraic adversary Af . Note that for different random choices of τA
and τO we get the same Af (up to renaming) with overwhelming probability.

It remains to show that the adversary we just built is Dolev-Yao. Suppose that
it is not. Then Af must, at some point, send a query that contains a non-adversarial
nonce n⋆ that is not in the closure of the messages he received before. If this nonce
occurs inside an encryption (with an unknown key) then one can build an adversary
breaking the IND-CCA security of the encryption scheme [MW04]. Assume then
that it occurs inside a commitment. We now build an adversary that breaks the
IND-COM-CCA security of the commitment scheme.

This adversary simulates the environment to Ac using the de-commit oracle
when necessary except for the query that contains n⋆. There it generates two
interpretations (n0, n1) for n

⋆ and gives them as challenge plaintext for the IND-
COM-CCA game. The challenger gives back a commitment to nb where b is the
challenge bit. This commitment to nb is used to answer the oracle queries. At the
moment AC outputs the interpretation of n⋆ we can check whether it is n0 or
n1.

A formal security notion is a predicate Pf on formal traces. A protocol Π |=f Pf

if for all adversaries Af ∈ DY holds that trace(Af ,O
f ) ∈ Pf . Similarly, a com-

putational security notion is a predicate Pc on computational traces. A proto-
col Π |=c Pc if for all probabilistic polynomial-time adversaries Ac holds that
trace(Af ,O

f ) ∈ Pc with overwhelming probability (taken over the random choices
of the adversary and the ones of the oracle environment). The proof of the following
theorem follows as in [MW04].

Theorem 6.4. Let (TTP, Snd,Rcv) be a IND-COM-CCA secure commitment scheme
and let (K, E ,D) be an IND-CCA secure encryption scheme. Let Pf and Pc be re-
spectively formal and computational security notions such that for all formal traces



ft and all computational traces ct it holds that (ft ∈ Pf ∧ ft � ct) =⇒ ct ∈ Pc. Then

Π |=f Pf =⇒ Π |=c Pc .

7 Conclusions

We presented two equivalent security notions for commitment schemes: a simula-
tion based definition and a indistinguishability based one. We then gave a concrete
scheme satisfying this security notion. This construction is of interest on itself as it
is generic and has some interesting features like being reusable, perfectly binding
and secure against adaptive chosen-commitment attacks. We then applied this new
machinery to give sound interpretation of symbolic commitments while considering
active adversaries.
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schi. A generalization of DDH with applications to protocol analysis and
computational soundness. In CRYPTO’07, LNCS. Springer, 2007.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In EUROCRYPT’06, volume
4004 of LNCS, pages 409–426. Springer, 2006.

CIO98. Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive
and non-malleable commitment. In STOC’98, pages 141–150. ACM Press,
1998.

CKKW06. Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi. Com-
putationally sound symbolic secrecy in the presence of hash functions. In
FSTTCS’06, volume 4337 of LNCS, pages 176–187. Springer, 2006.

CKOS01. Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam
Smith. Efficient and non-interactive non-malleable commitment. In EURO-

CRYPT’01, volume 2045, pages 40–59. Springer, 2001.
DDN91. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography.

In STOC’91, pages 542–552. ACM Press, 1991.



EGL85. S. Even, O. Goldreich, and A. Lempel. A randomizing protocol for signing
contracts. Comm. ACM, 28(6):637–647, 1985.

FF00. Marc Fischlin and Roger Fischlin. Efficient non-malleable commitment
schemes. In CRYPTO’03, volume 1880 of LNCS, pages 413–431. Springer,
2000.

GM84. S. Goldwasser and S. Micali. Probabilistic encryption. J. Computer and

System Sciences, 28(2):270–299, 1984.
GMW91. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but

their validity and a methodology of cryptographic protocol design. J. ACM,
38(1):691–729, 1991.

GvR06. Flavio D. Garcia and Peter van Rossum. Sound computational interpretation
of symbolic hashes in the standard model. In IWSEC’06, volume 4266 of
LNCS, pages 33–47. Springer, 2006.

GvR08. Flavio D. Garcia and Peter van Rossum. Sound and complete computational
interpretation of symbolic hashes in the standard model. Theoretical Com-

puter Science, 394(1–2):112–133, 2008.
Her05. Jonathan Herzog. A computational interpretation of Dolev-Yao adversaries.

Theoretical Computer Science, 340(1):57–81, 2005.
JLM05. Romain Janvier, Yassine Lakhnech, and Laurent Mazar. Completing the pic-

ture: Soundness of formal encryption in the presence of active adversaries. In
ESOP’05, volume 3444 of LNCS, pages 172–185. Springer, 2005.
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