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Abstract. With more than 300 million cards sold, HID iClass is one
of the most popular contactless smart cards on the market. It is widely
used for access control, secure login and payment systems. The card uses
64-bit keys to provide authenticity and integrity. The cipher and key
diversification algorithms are proprietary and little information about
them is publicly available. In this paper we have reverse engineered all
security mechanisms in the card including cipher, authentication proto-
col and key diversification algorithms, which we publish in full detail.
Furthermore, we have found six critical weaknesses that we exploit in
two attacks, one against iClass Standard and one against iClass Elite
(a.k.a., iClass High Security). In order to recover a secret card key, the
first attack requires one authentication attempt with a legitimate reader
and 222 queries to a card. This attack has a computational complexity
of 240 MAC computations. The whole attack can be executed within
a day on ordinary hardware. Remarkably, the second attack which is
against iClass Elite is significantly faster. It directly recovers the master
key from only 15 authentication attempts with a legitimate reader. The
computational complexity of this attack is lower than 225 MAC compu-
tations, which means that it can be fully executed within 5 seconds on
an ordinary laptop.

1 Introduction

iClass is an ISO/IEC 15693 [20] compatible contactless smart card manufac-
tured by HID Global. It was introduced in the market back in 2002 as a secure
replacement of the HID Prox card which did not have any cryptographic ca-
pabilities. According to the manufacturer, more than 300 million iClass cards
have been sold. These cards are widely used in access control of secured buildings
such as The Bank of America Merrill Lynch, the International Airport of Mexico
City and the United States Navy base of Pearl Harbor [9] among many others3.
Other applications include secure user authentication such as in the naviGO
system included in Dell’s Latitude and Precision laptops; e-payment like in the
FreedomPay and SmartCentric systems; and billing of electric vehicle charging
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such as in the Liberty PlugIns system. iClass has also been incorporated into
the new BlackBerry phones which support Near Field Communication (NFC).

iClass uses a proprietary cipher to provide data integrity and mutual authen-
tication between card and reader. The cipher uses a 64-bit diversified key which
is derived from a 56-bit master key and the serial number of the card. This key
diversification algorithm is built into all iClass readers. The technology used in
the card is covered by US Patent 6058481 and EP 0890157. The precise descrip-
tion of both the cipher and the key diversification algorithms are kept secret by
the manufacturer following the principles of security by obscurity. Remarkably,
all iClass Standard cards worldwide share the same master key for the iClass
application. This master key is stored in the EEPROM memory of every iClass
reader. It is possible though to let HID generate and manage a custom key for
your system if you are willing to pay a higher price. The iClass Elite Program
(a.k.a., High Security) uses an additional key diversification algorithm and a
custom master key per system which according to HID provides “the highest
level of security” [19].

Over the last few years, much attention has been paid to the (in)security
of the cryptographic mechanisms used in contactless smart cards [14,17,27,32].
Experience has shown that the secrecy of proprietary ciphers does not con-
tribute to its cryptographic strength. Most notably the Mifare Classic, which
has widespread application in public transport ticketing and access control sys-
tems, has been thoroughly broken in the last few years [6, 11, 14, 16, 26]. Other
prominent examples include KeeLoq [4, 22] and Hitag2 [7, 30, 32] used in car
keys and CryptoRF [1, 2, 17] used in access control and payment systems. HID
proposes iClass as a migration option for systems using Mifare Classic, boosting
that iClass provides “improved security, performance and data integrity”4. For
almost one decade after its introduction to the market, the details of the security
mechanisms of iClass remained unknown.

Our contribution In this paper we have fully reverse engineered iClass’s pro-
prietary cipher and authentication protocol which we publish in full detail. This
task is not trivial since it was first necessary to bypass the read protection
mechanisms of the microcontroller used in the readers in order to retrieve its
firmware. Furthermore we have found serious vulnerabilities in the cipher that
enable an attacker to recover the secret key from the card by just wirelessly
communicating with it. The potential impact of this attack is vast since other
vulnerabilities in the key diversification algorithm allow an adversary to use this
secret key to recover the master key, provided that he has mild computational
power. Additionally, we have reverse engineered the iClass Elite key diversifica-
tion algorithm which we describe in full detail. We show that this algorithm has
even more serious vulnerabilities than the standard key diversification algorithm,
allowing an attacker to directly recover the master key by simply communicating
with a legitimate iClass reader. Concretely, we propose two attacks: one against
iClass Standard and one against iClass Elite. Both attacks allow an adversary
to recover the master key.
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• The first attack exploits a total of four weaknesses in the cipher, key di-
versification algorithm and implementation. In order to execute this attack
the adversary first needs to eavesdrop one legitimate authentication session
between card and reader. Then it runs 219 key updates and 222 authentica-
tion attempts with the card. This takes less than six hours to accomplish
when using a Proxmark III as a reader and recovers 24 bits of the card key.
Finally, off-line, the attacker needs to search for the remaining 40 bits of the
key. Having recovered the card key, the adversary gains full control over the
card. Furthermore, computing the master key from the card key is as hard
as breaking single DES [15].

• The second attack concerning iClass Elite exploits two weaknesses in the key
diversification algorithm and recovers the master key directly. In order to run
this attack the adversary only needs to run 15 authentication attempts with
a legitimate reader. Afterwards, off-line, the adversary needs to compute
only 225 DES encryptions in order to recover the master key. This attack,
from beginning to end runs within 5 seconds on ordinary hardware.

We have executed both attacks in practice and verified these claims and attack
times. For eavesdropping and card emulation we used a Proxmark III (see http://

www.proxmark.org) which costs approximately 200 USD.

Related work Recently, Meriac proposed a procedure to read out the EEP-
ROM of a PIC microcontroller, like the ones used in iClass readers [25]. The
reverse engineering process described here builds upon this work. Garcia, de
Koning Gans and Verdult in [15] have reverse engineered the key diversification
algorithm of iClass and showed that it is possible to recover a master key when
the adversary has full control (i.e., can execute arbitrary commands) over a le-
gitimate iClass reader. They also showed that inverting the key diversification
function in iClass is as hard as a chosen plaintext attack on single DES. During
the course of our research Kim, Jung, Lee, Jung and Han have made a techni-
cal report [23] available online describing independent reverse engineering of the
cipher used in iClass. Their research takes a very different, hardware oriented
approach. They recovered most of the cipher by slicing the chip and analyzing
the circuits with a microscope. Our approach, however, is radically different as
our reverse engineering is based on the disassembly of the reader’s firmware and
the study of the communication behavior of tags and readers. Furthermore, the
description of the cipher by Kim et al. is not correct. Concretely, their key byte
selection function in the cipher is different from the one used in iClass which
results in incompatible keys. Kim et al. have proposed two key recovery attacks.
The first one is theoretical, in the sense that it assumes that an attacker has
access to a MAC oracle over messages of arbitrary length. This assumption is
unrealistic since neither the card nor the reader provide access to such a pow-
erful oracle. Their second attack requires full control over a legitimate reader
in order to issue arbitrary commands. Besides this assumption, it requires 242

online authentication queries which, in practice, would take more than 710 years
to gather. Our attacks, however, are practical in the sense that they can be
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executed within a day and require only wireless communication with a genuine
iClass card/reader.

Overview This paper is organized as follows. Section 2 starts with a descrip-
tion of the iClass architecture, the functionality of the card, the cryptographic
algorithms. Section 2.6 describes four weakness in the cipher, key diversification
algorithm and implementation of iClass. All these weaknesses are exploited in
Section 2.7 were we propose a key recovery attack against iClass. Section 3 stud-
ies iClass Elite. We first describe its key diversification algorithm and then we
describe two weaknesses which are later exploited in Section 3.3 to mount an
attack that recovers the master key. Finally, Section 4 gives concluding remarks.

2 iClass

An HID iClass card is in fact a pre-configured and re-branded PicoPass card
produced by Inside Secure5. HID configures and finalizes the cards so that the
configuration settings can no longer be modified. This section describes in detail
the functionality and security mechanisms of iClass and it also describes the
reverse engineering process. Let us first introduce notation.

Notation 2.1 Throughout this paper ǫ denotes the empty bitstring. ⊕ denotes
exclusive or. ⊞ denotes addition modulo 256. Given two bitstrings x and y, xy
denotes their concatenation. Sometimes we write this concatenation explicitly
with x · y to improve readability. x denotes the bitwise complement of x. 0n

denotes a bitstring of n zero-bits. Furthermore, given a bitstring x ∈ (Fk
2)

l, we
denote with x[i] the i-th element y ∈ F

k
2 of x. We write yi to denote the i-th bit

of y. For example, given the bitstring x = 0x010203 ∈ (F8
2)

3 and y := x[2] then
y = 0x03 and y6 = 1.

Remark 1 (Byte representation). Throughout this paper, bytes are represented
with their most significant bit on the left. However, the least significant bit is
transmitted first over the air (compliant with ISO/IEC 15693). This is the same
order in which the bits are input to the cryptographic functions. In other words,
0x0a0b0c is transmitted and processed as input 0x50d030.

2.1 Reverse engineering iClass

In order to reverse engineer the cipher and the key diversification algorithms,
we have first recovered the firmware from an iClass reader. For this we used a
technique introduced in [25] and later used in [15]. Next we will briefly describe
this technique.

iClass readers, as many other embedded devices, rely on the popular PIC
microcontroller to perform their computations. These microcontrollers are very
versatile and can be flashed with a custom firmware. The (program) memory of
the microcontroller is divided into a number of blocks, each of them having access
control bits determining whether this block is readable/writable. Even when the
PIC is configured to be non-writable, it is always possible to reset the access

5 http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass
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control bits by erasing the memory of the chip. At first glance this feature does
not seem very helpful to our reverse engineering goals since it erases the data on
the memory. Conveniently enough, even when the most common programming
environments do not allow it, the microcontroller supports erasure of a single
block. After patching the PIC programmer software to support this feature, it
is possible to perform the following attack to recover the firmware:

• Buy two iClass RW400 (6121AKN0000) readers.
• Erase block 0 on one of the readers. This resets the access control bits on
block 0 to readable, writable.
• Write a small dumper program on block 0 that reads blocks 1, . . . , n and
outputs the data via one of the microcontroller’s output pins.
• Use the serial port of a computer to record the data. This procedure recovers
blocks 1, . . . , n.
• Proceed similarly with the other reader, but erasing blocks 1, . . . , n. This in
fact fills each block with NOP operations.
• At the end of block n write a dumper program for block 0.
• At some point the program will jump to an empty block and then reach
dumper program that outputs the missing block 0.

Once we had recovered the firmware, it was possible to use IDA Pro and MPLAB
to reverse engineer the algorithms.

2.2 Functionality

iClass cards come in two versions called 2KS and 16KS with respectively 256 and
4096 bytes of memory. The memory of the card is divided into blocks of eight
bytes as shown in Figure 2.1. Memory blocks 0, 1, 2 and 5 are publicly readable.
They contain the card identifier id, configuration bits, the card challenge cC
and issuer information. Block 3 and 4 contain two diversified cryptographic keys
k1 and k2 which are derived from two different master keys K1 and K2. These
master keys are referred to in the documentation as debit key and credit key. The
card only stores the diversified keys k1 and k2. The remaining memory blocks
are divided into two areas, so-called applications. The size of these applications
is defined by the configuration block.

Block Content Denoted by

0 Card serial number Identifier id
1 Configuration
2 e-Purse Card challenge cC

3 Key for application 1 Diversified debit key k1
4 Key for application 2 Diversified credit key k2
5 Application issuer area

6. . . 18 Application 1 HID application
19. . .n Application 2 User defined memory

publicly readable

write-only after authentication

read-write after authentication

Fig. 2.1. Memory layout of an iClass card

The first application of an iClass card is the HID application which stores
the card identifier, PIN code, password and other information used in access
control systems. Read and write access to the HID application requires a valid
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mutual authentication using the cipher to prove knowledge of k1. The master key
of the HID application is a global key known to all iClass Standard compatible
readers. The globally used key K1 is kept secret by HID Global and is not shared
with any customer or industrial partner. Recovery of this key undermines the
security of all systems using iClass Standard. Two methods have been proposed
[15,25] to recover this key. To circumvent the obvious limitations of having only
a global master key, iClass Elite uses a different key diversification algorithm
that allows having custom master keys. The details regarding iClass Elite can
be found in Section 3. The second global master key K2 is used in both iClass
Standard and Elite systems and it is available to any developer who signs a
non-disclosure agreement with HID global. It is possible to extract this key from
publicly available software binaries [15]. In addition, the document [18] contains
this master key and is available online. This key K2 can be used by developers
to protect the second application, although in practice, K2 is hardly ever used
or modified.

The card provides basic memory operations like read and write which have
some non-standard behavior and therefore we describe them in detail.

• The read command takes as input an application number a and a memory
block number n and returns the memory content of this block. This command
has the side effect of selecting the corresponding key (k1 for application 1
or k2 for application 2) in the cipher and then it feeds the content of block
n into the internal state of the cipher. Cryptographic keys are not readable.
When the block number n corresponds to the address where a cryptographic
key is stored, then read returns a bitstring of 64 ones.

• The write command takes as input a block number n, an eight-byte payload
p and a MAC of the payload MAC(k, n · p). When successful, it writes p in
memory and it returns a copy of p for verification purposes. This command
has the side effect of resetting the internal state of the cipher. In addition,
when the block number n corresponds to the address where a cryptographic
key k is stored, the payload is XORed to the previous value instead of over-
writing it, i.e., it assigns k := k ⊕ p.

Therefore, in order to update a key k to k′, the reader must issue a write
command with k⊕ k′ as payload. In this way the card will store k⊕ k⊕ k′ = k′

as the new key. On the one hand, this particular key update procedure has the
special feature that in case an adversary eavesdrops a key update he is unable
to learn the newly assigned key, provided that he does not know k. On the other
hand this introduces a new weakness which we describe in Section 2.6.2.

Before being able to execute read or write commands on the protected
memory of a card, the reader needs to get access to the corresponding appli-
cation by running a successful authentication protocol described in Section 2.3.
Cryptographic keys k1 and k2 can be seen as part of application 1 and 2, respec-
tively. This means that in order to modify a key e.g., k1, the reader first needs
to run a successful authentication with k1.
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2.3 Authentication protocol

This section describes the authentication protocol between an iClass card and
reader. This protocol is depicted in Figure 2.2 and an example trace is shown
in Figure 2.3. First, during the anti-collision protocol, the reader learns the
identity of the card id. Then, the reader chooses an application and issues a

id, cC
←−−−−−−−−−−−−−−−−−−
nR,MAC(k, cC · nR)
−−−−−−−−−−−−−−−−−−→
MAC(k, cC · nR · 0

32)
←−−−−−−−−−−−−−−−−−−

Fig. 2.2. Authentication protocol

read command on the card challenge cC . This cC is called ‘e-purse’ in the iClass
documentation [5] and it is a special memory block in the sense that it is intended
to provide freshness. In the next step, the reader issues an authenticate
command. This command sends to the card a reader nonce nR and a MAC of
the card challenge cC concatenated with nR. Finally, the card answers with a
MAC of cC , nR followed by 32 zero bits. For more details on the MAC function
see Section 2.4. After a successful authentication on cC the reader is granted
read and write access within the selected application.

Origin Message Description

Reader 0C 00 73 33 Read identifier

Tag 47 47 6C 00 F7 FF 12 E0 Card serial number id

Reader 0C 01 FA 22 Read configuration

Tag 12 FF FF FF E9 1F FF 3C iClass 16KS configuration

Reader 88 02 Read cC and select k1

Tag FE FF FF FF FF FF FF FF Card challenge cC

Reader 05 00 00 00 00 1D 49 C9 DA Authenticate with nR = 0,MAC(k1, cC · nR)

Tag 5A A2 AF 92 Response MAC(k1, cC · nR · 0
32)

Reader 87 02 FD FF FF FF FF FF FF FF CF 3B D4 6A Write on block 02, cC − 1,MAC(k1, 02 · cC − 1)

Tag FF FF FF FF FD FF FF FF Update succesful

Fig. 2.3. Authenticate and decrement card challenge cC using diversified key k1 =
0xE033CA419AEE43F9

Remark 2. Since the card lacks a pseudo-random generator, the reader should
decrement cC after a successful authentication in order to provide freshness for
the next authentication, see Figure 2.3. Note that this is not enforced by the
card.

2.4 The cipher

This section describes the cipher used in iClass. This cipher is interesting from
an academic and didactic perspective as it combines two important techniques in
the design of stream ciphers from the 80s and beginning of the 90s, i.e., Fibonacci
generators and Linear Feedback Shift Registers (LFSRs).

The internal state of the cipher consists of four registers. Two of them, which
we call left (l) and right (r) are part of the Fibonacci generator. The other two
registers constitute linear feedback shift registers top (t) and bottom (b).
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Definition 1 (Cipher state). A cipher state of iClass s is an element of F40
2

consisting of the following four components: 1. the left register l = (l0 . . . l7) ∈
F
8
2; 2. the right register r = (r0 . . . r7) ∈ F

8
2; 3. the top register t = (t0 . . . t15) ∈

F
16
2 . 4. the bottom register b = (b0 . . . b7) ∈ F

8
2.

The cipher has an input bit which is used (among others) during authenti-
cation to shift in the card challenge cC and the reader nonce nR. With every
clock tick a cipher state s evolves to a successor state s′. Both LFSRs shift to
the right and the Fibonacci generator iterates using one byte of the key (chosen
by the select(·) function) and the bottom LFSR as input. During this iteration
each of these components is updated, receiving additional input from the other
components of the cipher. With each iteration the cipher produces one output
bit. The following sequence of definitions describe the cipher in detail; see also
Figure 2.4.

k[0]

k[1]

k[2]

k[3]

k[4]

k[5]

k[6]

k[7]

oooo

OOOO

M

U

X

select(·)

0 1 2 3 4 5 6 7
��
⊞

⊞

⊕// //
OO

OO

OO

oo

0 1 2 3 4 5 6 7

��

0 1 2 3 4 5 6 7

OO ⊕ ⊕ ⊕
//

⊕ //

⊕

⊕

//

// output

input

��

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

��

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

//

l r

b

t

Fig. 2.4. The iClass cipher. Solid lines represent byte operations while dotted lines
represent bit operations.

Definition 2. The feedback function for the top register T : F16
2 → F2 is de-

fined as T (x0x1 . . . . . . x15) = x0 ⊕ x1 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x14 ⊕ x15. Sim-
ilarly, the feedback function for the bottom register B : F8

2 → F2 is defined as
B(x0x1 . . . x7) = x1 ⊕ x2 ⊕ x3 ⊕ x7.

Definition 3 (Selection function). The selection function select : F2 × F2 ×
F
8
2 → F

3
2 is defined as select(x, y, r) = z0z1z2 where

z0 = (r0 ∧ r2)⊕ (r1 ∧ r3)⊕ (r2 ∨ r4)

z1 = (r0 ∨ r2)⊕ (r5 ∨ r7)⊕ r1 ⊕ r6 ⊕ x⊕ y

z2 = (r3 ∧ r5)⊕ (r4 ∧ r6)⊕ r7 ⊕ x

Definition 4 (Successor state). Let s = 〈l, r, t, b〉 be a cipher state, k ∈ (F8
2)

8

be a key and y ∈ F2 be the input bit. Then, the successor cipher state s′ =
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〈l′, r′, t′, b′〉 is defined as

t′ := (T (t)⊕ r0 ⊕ r4)t0 . . . t14 l′ := (k[select(T (t),y,r)] ⊕ b′)⊞ l ⊞ r

b′ := (B(b)⊕ r7)b0 . . . b6 r′ := (k[select(T (t),y,r)] ⊕ b′)⊞ l

We define the successor function suc which takes a key k ∈ (F8
2)

8, a state s and
an input y ∈ F2 and outputs the successor state s′. We overload the function suc
to multiple bit input x ∈ F

n
2 which we define as

suc(k, s, ǫ) = s

suc(k, s, x0 . . . xn) = suc(k, suc(k, s, x0 . . . xn−1), xn)

Definition 5 (Output). Define the function output which takes an internal
state s =< l, r, t, b > and returns the bit r5. We also define the function output
on multiple bits input which takes a key k, a state s and an input x ∈ F

n
2 as

output(k, s, ǫ) = ǫ

output(k, s, x0 . . . xn) = output(s) · output(k, s′, x1 . . . xn)

where s′ = suc(k, s, x0).

Definition 6 (Initial state). Define the function init which takes as input a
key k ∈ (F8

2)
8 and outputs the initial cipher state s =< l, r, t, b > where

t := 0xE012 l := (k[0] ⊕ 0x4C)⊞ 0xEC

b := 0x4C r := (k[0] ⊕ 0x4C)⊞ 0x21

Definition 7. Define the function MAC : (F8
2)

8 × F
n
2 → F

32
2 as

MAC(k,m) = output(k, suc(k, init(k),m), 032)

2.5 Key diversification

This section describes in detail the built-in key diversification algorithm of iClass.
Besides the obvious purpose of deriving a card key from a master key, this
algorithm intends to circumvent weaknesses in the cipher by preventing the
usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
reader first encrypts the card identity id with the master key K, using single
DES. The resulting ciphertext is then input to a function called hash0 which
outputs the diversified key k.

k = hash0(DESenc(id,K))

Here the DES encryption of id with master key K outputs a cryptogram c

of 64 bits. These 64 bits are divided as c = 〈x, y, z[0], . . . , z[7]〉 ∈ F
8
2 × F

8
2 × (F6

2)
8

which is used as input to the hash0 function. This function introduces some
obfuscation by performing a number of permutations, complement and modulo
operations, see Figure 2.5. Besides that, it checks for and removes patterns like
similar key bytes, which could produce a strong bias in the cipher. Finally, the
output of hash0 is the diversified card key k = k[0], . . . , k[7] ∈ (F8

2)
8.
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k[1] k[2] k[3] k[7]k[4] k[6]k[5]k[0]

x y z[7] z[6] z[5] z[4] z[3] z[2] z[1] z[0]

{ { { { { { { {

Fig. 2.5. Schematic representation of the function hash0

Remark 3. The DES implementation used in iClass is non-compliant with the
NIST standard [12] in the way of representing keys. According to the standard, a
DES key is of the form 〈k0 . . . k6p0, k7 . . . k13p1, . . . , k47 . . . k55p7〉 where k0 . . . k55
are the actual key bits and p0 . . . p7 are parity bits. Instead, in iClass a DES key
is of the form 〈k0 . . . k55p0 . . . p7〉.

The following sequence of definitions describe the function hash0 in detail. This
function is included here for the sake of completeness. The details over this
construction are not necessary to understand the attacks presented in Section 2.7
and Section 3.3.

Definition 8. Let the function check : (F6
2)

8 → (F6
2)

8 be defined as

check(z[0] . . . z[7]) = ck(3, 2, z[0] . . . z[3]) · ck(3, 2, z[4] . . . z[7])

where ck : N× N× (F6
2)

4 → (F6
2)

4 is defined as

ck(1,−1, z[0] . . . z[3]) = z[0] . . . z[3]

ck(i,−1, z[0] . . . z[3]) = ck(i− 1, i− 2, z[0] . . . z[3])

ck(i, j, z[0] . . . z[3]) =

{

ck(i, j − 1, z[0] . . . z[i] ← j . . . z[3]), z[i] = z[j];

ck(i, j − 1, z[0] . . . z[3]), otherwise.

Definition 9. Define the function permute : Fn
2 × (F6

2)
8 × N× N→ (F6

2)
8 as

permute(ǫ, z, l, r) = ǫ

permute(p0 . . . pn, z, l, r) =

{

(z[l] + 1) · permute(p0 . . . pn−1, z, l+ 1, r), pn = 1;

z[r] · permute(p0 . . . pn−1, z, l, r+ 1), otherwise.

Definition 10. Define the bitstring π ∈ (F8
2)

35 in hexadecimal notation as

π =0x0F171B1D1E272B2D2E333539363A3C474B
4D4E535556595A5C636566696A6C71727478

Each byte in this sequence is a permutation of the bitstring 00001111. Note
that this list contains only the half of all possible permutations. The other half
can be computed by taking the bit complement of each element in the list.

Finally, the definition of hash0 is as follows.
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Definition 11. Let the function hash0 : F8
2 × F

8
2 × (F6

2)
8 → (F8

2)
8 be defined as

hash0(x, y, z[0] . . . z[7]) = k[0] . . . k[7] where

z′[i] = (z[i] mod (63− i)) + i i = 0 . . . 3

z′[i+4] = (z[i+4] mod (64− i)) + i i = 0 . . . 3

ẑ = check(z′)

p =

{

π[x mod 35], x0 = 1;

π[x mod 35], otherwise.

z̃ = permute(p, ẑ, 0, 4)

k[i] =

{

yi · z̃[i] · pi + 1, yi = 1;

yi · z̃[i] · pi, otherwise.
i = 0 . . . 7

2.6 Weaknesses

This section describes weaknesses in the design and implementation of iClass
that are later exploited in Section 2.7 to mount a key recovery attack.

2.6.1 Weak keys The cipher has a clear weakness when the three rightmost
bits of each key byte are the same. Let us elaborate on that.

Proposition 1. Let β be a bitstring of length three. Then, for all keys k ∈ F
64
2

of the form k = α[0]β . . . α[7]β with α[i] ∈ F
5
2 the cipher outputs a constant Cβ .

β Cβ = MAC(k, cC · nR)

000 BF 5D 67 7F
001 10 ED 6F 11
010 53 35 42 0F
011 AB 47 4D A0
100 F6 CF 43 36
101 59 7F 4B 58
110 1A A7 66 46
111 E2 D5 69 E9

Fig. 2.6. Corresponding MAC for
each value of β

This is due to the fact that only the three
rightmost bits of register r define the output
of the cipher and only the rightmost bit of r
influences register b. But these, in turn, are
only influenced by the three rightmost bits
of the key bytes. This means that the 5 left-
most bits of r and the 5 leftmost bits of each
key byte affect only the key byte selection,
but for the key under consideration this does
not affect the output. The same holds for cC
and nR as they are just input to the select(·)
function. Figure 2.6 shows the corresponding MAC value for each possible β.
The manufacturer seems to be aware of this feature of the cipher since the func-
tion hash0, used in key diversification, prevents such a key from being used.
Although, this weakness combined with the weakness described in Section 2.6.2
and 2.6.3 result in a vulnerability exploited in Section 2.7.

2.6.2 XOR key update weakness In order to update a card key, the iClass
reader does not simply send the new key to the card in the clear but instead it
sends the XOR of the old and the new key (See Section 2.2). This simple mech-
anism prevents an attacker from eavesdropping the new key during key update.
Although, this key update mechanism introduces a new weakness, namely, it
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makes it possible to make partial modifications to the existing key. A key up-
date should be an atomic operation. Otherwise, it allows an adversary to split
the search space in a time-memory trade-off. Moreover, in case the cipher has
some weak keys like the ones described in Section 2.6.1, it allows an adversary
to force the usage of one of these keys.

2.6.3 Privilege escalation weakness Several privilege escalation attacks
have been described in the literature [10, 24]. The privilege escalation weakness
in iClass also concerns the management of access rights over an application
within the card. After a successful authentication for application 1 has been ex-
ecuted, the reader is granted read and write access to this application. Then, it
is possible to execute a read command for a block within application 2 without
loosing the previously acquired access rights. More precisely, when a read com-
mand is issued for a block n within application 2, with n 6= cC , this returns a
sequence of 64 ones which indicates that permission is denied to read this block.
Surprisingly, this read attempt on application 2 does not affect the previously
acquired access rights on application 1. This read command though, has the
side effect of loading the key k2 into the internal state of the cipher. In partic-
ular, from this moment on the card accepts write commands on application 1
that have a valid MAC computed using key k2.

2.6.4 Weak key diversification on iClass The key diversification algorithm
of iClass was reverse engineered by Garcia et al. in [15]. This algorithm uses a
combination of single DES and a proprietary function called hash0 , described in
Section 2.5. Furthermore, the authors show that the function hash0 is not one-
way nor collision resistant. In fact, it is possible to compute the inverse function
hash0−1 having a modest amount (on average 4) of candidate pre-images. They
also show that once a card key is known, recovering an iClass master key is not
harder than a chosen plaintext attack on single DES. After careful inspection of
the function hash0 it becomes clear that this function attempts to fix the weak
key weakness presented in Section 2.6.1. The function hash0 makes sure that,
when looking at the last bit of each key byte, exactly four of them are zeros (and
the other four of them are ones). Due to this restriction there are only 8!

(4!)2 = 70

possibilities for the last bits of each key byte, instead of 28 = 256, reducing the
entropy of the key by 1.87 bits.

2.7 Key recovery attack on iClass

This section shows how the weaknesses described in Section 2.6 can be exploited.
Concretely, we propose an attack that allows an adversary to recover a card key
by wirelessly communicating with a card and a reader. Once the card key has
been recovered, the weak key diversification weakness described in Section 2.6.4
can be exploited in order to recover the master key. Next, we describe the attack
on the card key in detail.

In order to recover a target card key k1 from application 1, an attacker A

proceeds as follows. First, A eavesdrops a legitimate authentication trace on
the e-purse with key k1, while making sure that the e-purse is not updated. If
the reader attempts to update the e-purse, this can be prevented by playing
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as man-in-the-middle or by simply jamming the e-purse update message. Next,
the adversary replays this authentication trace to the card. At this point the
adversary gains read and write access to application 1. Although, in order to
actually be able to write, the adversary still needs to send a valid MAC with k1
of the payload. To circumvent this problem, the adversary proceeds as described
in Section 2.6.3, exploiting the privilege escalation weakness. At this point the
adversary still has read and write access to application 1 but he is now able to
issue write commands using MACs generated with the known key k2 to write
on application 1. In particular, A is now able to modify k1 at will. Exploiting
the XOR key update weakness described in Section 2.6.2, the adversary modifies
the card key k1 into a weak key by setting the three rightmost bits of each key
byte the same. Concretely, the adversary runs 23×7 = 221 key updates on the
card with ∆ = 05δ[0] . . . 0

5δ[6]0
8 ∈ F

64
2 and δ[i] = abc ∈ F

3
2 for all possible bits a, b

and c. One of these key updates will produce a weak key, i.e., a key of the form
k = α[0]β . . . α[7]β with α[i] ∈ F

5
2. Exploiting the weak key weakness described in

Section 2.6.1, after each key update A runs 8 authentication attempts, one for
each possible value of β, using the MAC values shown in Figure 2.6. Note that a
failed authentication will not affect the previously acquired access rights. As soon
as an authentication attempt succeeds the card responds with a MAC value that
univocally determines β as stated in Proposition 1. Knowing β the adversary is
able to recover the three rightmost bits of k1[i] by computing β⊕δ[i] for i = 0 . . . 6.
Furthermore, the three rightmost bits of k[7] are equal to β⊕000 = β. In this way,
the attacker recovers 3× 8 = 24 bits of k1 and only has to search the remaining
40 bits of the key, using the legitimate trace eavesdropped in the beginning.

This attack can be further optimized. The restriction on the last bit of each
byte imposed by hash0 , described at the end of Section 2.6.4, reduces the number
of required key updates from 221 to almost 219. Therefore, it reduces the total
number of authentication attempts to 219 × 8 = 222. Once the attacker has
recovered the card key k1, as we already mention in Section 2.6.4, recovering the
master key is just as hard as breaking single DES.

3 iClass Elite

HID introduces iClass Elite (a.k.a. High Security) as the solution for “those who
want a boost in security” [8]. iClass Elite aims to solve the obvious limitations
of having just one single world-wide master key for all iClass systems. Instead,
iClass Elite allows customers to have a personalized master key for their own
system. To this purpose, HID has modified the key diversification algorithm,
described in Section 2.5 by adding an extra step to it. This modification only
affects the way in which readers compute the corresponding card key but does
not change anything on the cards themselves. Section 3.1 describes this key
diversification algorithm in detail. Then Section 3.2 describes two weaknesses
that are later exploited in Section 3.3.

3.1 Key diversification on iClass Elite

This section describes the key diversification algorithm of iClass Elite. We first
need to introduce a number of auxiliary functions and then we explain this
algorithm in detail.
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Definition 12 (Auxiliary functions). Let us define the bit-rotate left function
rl : F8

2 → F
8
2 as rl(x0 . . . x7) = x1 . . . x7x0. Similarly, define the bit-rotate right

function rr : F8
2 → F

8
2 as rr(x0 . . . x7) = x7x0 . . . x6. Furthermore, define the

nibble-swap function swap : F8
2 → F

8
2 as swap(x0 . . . x7) = x4 . . . x7x0 . . . x3.

Definition 13. Let the function hash1 : (F8
2)

8 → (F8
2)

8 be defined as
hash1(id[0] . . . id[7]) = k[0] . . . k[7] where

k[i] = k′[i] mod 128, i = 0 . . . 7

k′[0] = id[0] ⊕ · · · ⊕ id[7] k′[4] = rr(id[4] ⊞ k′[2]) + 1

k′[1] = id[0] ⊞ . . .⊞ id[7] k′[5] = rl(id[5] ⊞ k′[3]) + 1

k′[2] = rr(swap(id[2] ⊞ k′[1])) k′[6] = rr(id[6] ⊞ (k′[4] ⊕ 0x3C))

k′[3] = rl(swap(id[3] ⊞ k′[0])) k′[7] = rl(id[7] ⊞ (k′[5] ⊕ 0xC3))

Definition 14. Define the rotate key function rk : (F8
2)

8 × N→ (F8
2)

8 as

rk(x[0] . . . x[7], 0) = x[0] . . . x[7]

rk(x[0] . . . x[7], n+ 1) = rk(rl(x[0]) . . . rl(x[7]), n)

Definition 15. Let the function hash2 : (F8
2)

8 → (F64
2 )16 be defined as

hash2(k[0] . . . k[7]) = y[0]z[0] . . . y[7]z[7] where

z[0] = DESenc(K
cus,Kcus); z[i] = DESdec(rk(K

cus, i), z[i−1]) i = 1 . . . 7

y[0] = DESdec(z[0],Kcus); y[i] = DESenc(rk(K
cus, i), y[i−1]) i = 1 . . . 7

Next we introduce the selected key. This key is used as input to the standard
iClass key diversification algorithm. It is computed by taking a selection of bytes
from hash2(Kcus). This selection is determined by each byte of hash1(id) seen
as a byte offset within the bitstring hash2(Kcus).

Definition 16. Let h ∈ (F8
2)

128. Let ksel ∈ (F8
2)

8 be the selected key defined as

h := hash2(Kcus); ksel[i] := h[hash1(id)[i]] i = 0 . . . 7

The last step to compute the diversified card key is just like in iClass (see
Section 2.5) k := hash0(DESenc(k

sel, id)).

3.2 Weaknesses in iClass Elite

This section describes two weaknesses in the key diversification algorithm of
iClass Elite. These weaknesses are exploited in Section 3.3 to mount an attack
against iClass Elite that recovers the custom master key.

3.2.1 Redundant key diversification on iClass Elite Assume that an
adversary somehow learns the first 16 bytes of hash2(Kcus), i.e., y[0] and z[0].
Then he can simply recover the master custom key Kcus by computing

Kcus = DESenc(z[0], y[0]) .

Furthermore, the adversary is able to verify that he has the correct Kcus by
checking whether z[0] = DESenc(K

cus,Kcus).
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3.2.2 Weak key-byte selection on iClass Elite Yet another weakness
within the key diversification algorithm of iClass Elite has to do with the way
in which bytes from hash2(Kcus) are selected in order to construct the key ksel.

As described in Section 3.1, the selection of key bytes from hash2(Kcus) is
determined by hash1(id). This means that only the card’s identity determines
which bytes of hash2(Kcus) are used for ksel. This constitutes a serious weakness
since no secret is used in the selection of key bytes at all. Especially considering
that, for some card identities, the same bytes of hash2(Kcus) are chosen multiple
times by hash1(id). In particular, this implies that some card keys have signifi-
cantly lower entropy than others. What is even more worrying, an adversary can
compute by himself which card identities have this feature.

3.3 Key recovery attack on iClass Elite

In order to recover a master key Kcus, an attacker proceeds as follows. First,
exploiting the weakness described in Section 3.2.2, the adversary builds a list
of chosen card identities like shown in Figure 3.1. This table shows a list of
15 card identities and their corresponding key-byte selection indices hash1(id).

card identity id hash1(id)
000B0FFFF7FF12E0 0101000045014545
00040E08F7FF12E0 7802000045014545
00090D05F7FF12E0 7B03000045014545
000A0C06F7FF12E0 7A04000045014545
000F0B03F7FF12E0 7D05000045014545
00080A0CF7FF12E0 7406000045014545
000D0909F7FF12E0 7707000045014545
000E080AF7FF12E0 7608000045014545
00030717F7FF12E0 6909000045014545
003C06E0F7FF12E0 200A000045014545
0001051DF7FF12E0 630B000045014545
0002041EF7FF12E0 620C000045014545
0007031BF7FF12E0 650D000045014545
00000224F7FF12E0 5C0E000045014545
00050121F7FF12E0 5F0F000045014545

Fig. 3.1. Chosen card identities

These card identities are malicious.
They are chosen such that the re-
sulting key ksel has very low en-
tropy (in fact, it is possible to find
several tables with similar charac-
teristics). For the first card iden-
tity in the table, the resulting key
ksel is build out of only three differ-
ent bytes from hash2(Kcus), namely
0x00, 0x01 and 0x45. Therefore,
this key has as little as 24 bits of en-
tropy (instead of 56). Next, the ad-
versary will initiate an authentica-
tion protocol run with a legitimate
reader, pretending to be a card with
identity id = 0x000B0FFFF7FF12E0 as in the table. Following the authenti-
cation protocol, the reader will return a message containing a nonce nR and a
MAC with k. The adversary will repeat this procedure for each card identity in
the table, storing a tuple < id, nC , nR,MAC > for each entry. Afterwards, off-
line, the adversary tries all 224 possibilities for bytes 0x00, 0x01 and 0x45 for
the first key identity. For each try, he computes the resulting k and recomputes
the authentication run until he finds a MAC equal to the one he got from the
reader. Then he has recovered bytes 0x00, 0x01 and 0x45 from hash2(Kcus).
The adversary proceeds similarly for the remaining card identities from the ta-
ble. Although, this time he already knows bytes 0x00, 0x01 and 0x45 and
therefore only two bytes per identity need to be explored. This lowers the com-
plexity to 216 for each of the remaining entries in the table. The bytes that need
to be explored at each step are highlighted with boldface in the table. At this
point the adversary has recovered the first 16 bytes of hash2(Kcus). Finally, ex-
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ploiting the weakness described in Section 3.2.1, the adversary is able to recover
the custom master key Kcus with a total computational complexity of 225 DES

encryptions.

4 Conclusions
In this paper we have shown that the security of several building blocks of iClass
is unsatisfactory. We have found many vulnerabilities in the cryptography and
the implementation of iClass that result in two key recovery attacks. Our first at-
tack requires one eavesdropped authentication trace with a genuine reader (which
takes about 10ms). Next, the adversary needs 222 authentication attempts with
a card, which in practice takes approximately six hours. To conclude the attack,
the adversary needs only 240 off-line MAC computations to recover the card key.
The whole attack can be executed within a day. For the attack against iClass
Elite, an adversary only needs 15 authentication attempts with a genuine reader
to recover the custom master key. The computational complexity of this attack
is negligible, i.e., 225 DES encryptions. This attack can be executed from begin-
ning to end in less than five seconds. We have successfully executed both attacks
in practice and verified the claimed attack times.

This paper reinforces the point that has been made many times: security by
obscurity often covers up negligent designs. The built-in key diversification and
especially the function hash0 is advertised as a security feature but in fact it is
a patch to circumvent weaknesses in the cipher. The cipher is a basic building
block for any secure protocol. Experience shows that once a weakness in a cipher
has been found, it is extremely difficult to patch it in a satisfactory manner. Us-
ing a well known and community reviewed cipher is a better alternative. The
technique described in [28] could be considered as a palliating countermeasure
for our first attack. More is not always better: the key diversification algorithm of
iClass Elite requires fifteen DES operations more than iClass Standard while it
achieves inferior security. Instead, it would have been more secure and efficient to
use 3DES than computing 16 single DES operations in an ad hoc manner. NIST
have proposed a statistical test suite [29] that can be used to measure the cryp-
tographic strength of a cipher. Although, many weaknesses arise from mistakes
in the implementation. Best practice in the development and implementation of
security products should incorporate some form of formal verification to prevent
that, see for instance [13]. Furthermore, systematic and automated model check-
ing techniques proposed in [31] can help to detect and avoid implementation
weaknesses like the privilege escalation in iClass. Alternatively, formalizing the
whole design in a theorem prover [3,21] may reveal additional weaknesses. In line
with the principles of responsible disclosure, we have notified the manufacturer
HID Global and informed them of our findings back in November 2011. Our col-
laboration and communication with HID Global is ‘open and productive’. HID
has established a Product Security Reporting Center to encourage and improve
this type of communication.
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