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Abstract. Recent research into automotive security has shown that
once a single vehicle component is compromised, it is often possible to
take full control of the vehicle. This paper proposes LeiA, a lightweight
authentication protocol for the Controller Area Network (CAN). This
protocol allows critical vehicle Electronic Control Units (ECUs) to au-
thenticate each other providing compartmentalisation and preventing a
number of attacks e.g., where a compromised CD player is able to accel-
erate the vehicle. LeiA is designed to run under the stringent time and
bandwidth constraints of automotive applications and is backwards com-
patible with existing vehicle infrastructure. The protocol is suitable to
be implemented using lightweight cryptographic primitives yet providing
appropriate security levels by limiting the usage of every key in the sys-
tem. The security of LeiA is proven under the unforgeability assumption
of the MAC scheme under chosen message attacks (uf-cma).

1 Introduction

The automotive industry has recently faced a massive transformation which has
enabled serious security threats [8],[4],[15]. The increasing number of (wireless)
interfaces available in today’s cars exposes it to new attack vectors. Modern Cars
have dozens and sometimes even over a hundred of Electronic Control Units
(ECUs). While more technology is being introduced in modern vehicles, trans-
forming them into smart, connected cars, the underlying security infrastructure
has struggled to keep up with the pace of these changes.

The Controller Area Network (CAN), standardised in [13], is the most com-
monly used serial bus nowadays. Its purpose is to connect the ECUs of a car, and
allow them to communicate without a source or destination address. As the in-
vehicle network has been traditionally considered a safe, trusted environment,
and there were no wireless interfaces, resilience against cyber-attacks has not
been of prime concern. Also, the security of ECUs, which provide a significant
part of the functionality of a modern vehicle, has been overlooked. The CAN bus
is a broadcast network, whereby any message sent can be read by all connected
ECUs. By design, it does not provide security features, such as confidentiality
(messages are not encrypted, therefore they can be eavesdropped), or authen-
ticity (the source or destination of a message is unknown) [18]. Most attacks
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presented in the literature could be prevented if authentication was present on
the network, or at least their impact would be localised and mitigated.

While transitioning from mostly mechanical systems to complex systems with
digital components, manufacturers overlooked the possibility of a cyber-attacker
in their designs. The KeeLoq block cipher, used by various car manufacturers
in anti-theft mechanisms, was first attacked by Bogdanov in [2]. Later, this
attack was improved in [5],[12],[14]. Verdult et al. proposed an attack against the
Megamos Crypto [21], [24] and Hitag2 [22] vehicle immobilisers. These attacks
allow an adversary to start the vehicle without the car key. Automotive remote
keyless entry systems have also been shown to use weak key management and
cryptographic primitives, enabling an eavesdropping adversary to clone the car
key [7].

Koscher et al. [15] provide an extensive description of attack vectors under
the assumption that an attacker has direct access to the vehicle, focusing on
the security of the in-vehicle networks. Their research shows it is possible to
compromise the radio, instrument panel cluster, HVAC, BCM (which controls
door locks, interior and exterior lights, horn, windows, wipers, ignition), as well
as safety-critical functionality of the engine and brakes. They launched a generic
denial of service attack which disabled communication on the CAN bus and froze
the instrument panel cluster. Part of the attacks were then tested on the road,
proving their viability in a real-world scenario.

The work of Koscher et al. raises a key issue: how would an attacker get access
to the vehicle. Under the assumption that prior physical access to the vehicle
is deemed as an unrealistic scenario, Checkoway et al. [4] explore the external
attack surface of automotive vehicles. They successfully used the entertainment
system, radio, Bluetooth interface, Tire Pressure Monitoring System (TPMS)
and cellular network to compromise a vehicle. They also identified weaknesses
and exploited a PassThru device, used for servicing and diagnostics by dealer-
ships. They have shown that a malicious PassThru device can be used to send
CAN messages to a vehicle and install malware onto the car’s telematics unit.

Miller et al. [17] provide an extensive analysis of the wireless interfaces of a
Jeep Cherokee as potential attack surfaces. Most notably, they took advantage
of vulnerabilities in the Jeep’s UConnect system, which provides a cellular con-
nection to the vehicle, and showed how they could completely control the vehicle
over the Internet. They were able to control the car’s dashboard functions, steer-
ing, brakes, heating system, radio, windshield wipers, the car’s digital display
and transmission. They demonstrated the attacks live, on the road, for Wired
[8].

Ultimately, these attacks all rely on the fact that messages can be sent on
the CAN network by a malicious attacker or a compromised ECU, and they
are accepted by all other ECUs as if they were legitimate. The lack of source
authentication is an enabler for all these types of attacks. While vehicles are
designed to tolerate random failures, they cannot currently cope with malicious
cyber-attacks. The lock-down of components is not a viable solution, both from
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a legislative point of view (e.g., right-to-repair legislation) or from the economic
point of view of the manufacturer.

The AUTOSAR [1] specifications are a set of standards for ECU software
functionality. The purpose of the standard is to reduce the development cost of
ECU software and increase its scalability. The 4.2 release of the specification
includes provisions for security on CAN. It provides interfaces and guidelines for
authentication of messages, but leaves the implementation up to the manufac-
turer. The documents introduce the Secure On-board Communication module
and provide guidelines for implementing authentication. They recommend using
128-bit keys, 64-bit MACs, and counters or timestamps to provide freshness.
The MAC computation should be based on the data identifier, the data to be
sent and the freshness value.

Our contribution. This paper proposes LeiA, the first AUTOSAR compli-
ant, lightweight authentication protocol in the literature. The protocol respects
the requirements laid out to become a standard in the automotive industry, as
described in the Secure On-board Communication Module Specification, AU-
TOSAR Release 4.2.

LeiA does not require additional hardware components or substantial im-
plementation costs thus is less expensive than previously proposed solutions,
while providing higher security levels. The protocol has been designed by taking
into consideration real-world requirements and limitations of the CAN bus such
as limited bandwidth, short data frames and publisher-subscriber broadcast ar-
chitecture where newly arrived messages overwrite older ones in the receiver’s
buffer.

Furthermore, LeiA is fully backwards compatible with existing CAN con-
figuration, and is designed such that it can be flexibly implemented, providing
different security vs bandwidth, computational overhead trade-offs.

Finally, we have proven the protocol to provide secure authentication un-
der the unforgeability assumption of the MAC scheme under chosen plaintext
attacks. Since we use the same MAC scheme for key diversification, we have
the additional requirement that the produced MAC values are indistinguishable
from the output of the key generation function.

Related work. CANAuth [19] and LiBrA-CAN [9] are two protocols for light-
weight authentication over CAN. Both solutions make use of the CAN+ proto-
col, an improvement of the existing CAN. The CAN+ protocol was introduced
by Ziermann et al. in [23]. It takes advantage of the fact that additional data
can be sent in time intervals where the nodes conforming to the original CAN
protocol do not listen. Therefore, CAN+ is backwards compatible and allows
CAN-conform nodes to operate undisturbed alongside CAN+ nodes. This solu-
tion allows the transmission of 16 CAN+ bits, for one CAN bit transmitted.

Both solutions require replacing the CAN transceivers, and therefore imply
a large cost for the manufacturers. Also, the logistics that would be involved in
upgrading vehicles already in use are unclear.



4

Several solutions which do not require modified hardware have been pro-
posed. We discuss them below and highlight their differences in respect with our
proposed protocol, LeiA.

MaCAN is an authenticated protocol described in [10]. It is designed specif-
ically for the CAN bus and takes into account the network’s constraints, such
as message length and available resources. MaCAN authenticates 4-byte mes-
sages with 4-byte MACs, in bidirectional communication. Timestamps are used
as source of freshness, therefore, a time server is added into the system, which
broadcasts a timestamp at regular intervals. Also, a key server is added, which
shares a symmetric long term key with each security-enabled node. The key
server mediates the establishment of keys between two nodes that want to se-
curely communicate. In the case multiple nodes need to be able to verify the
authenticity of a message, they propose using group keys. Bruni et al. give a
formal analysis of the MaCAN protocol in [3]. They formally prove the secrecy
of both long term keys and session keys used by the protocol. However, they
found an attack through which one node is left unauthenticated and proposed a
corrected version of the protocol. MaCAN introduces two new elements in the
network, a time server and a key server. In LeiA, we remove the need for these
components by using counters, instead of the time server, and by having each
node derive the session keys locally, instead of having a key server.

LCAP was proposed by Hazem et al. in [11] and is a lightweight broadcast
authentication protocol, which closely follows the CAN specification. The au-
thors propose the use of a “magic number”, which is appended to the message,
instead of MACs. The number is part of a chain, which is obtained by applying
a transformation function on an initial value, multiple times. Given the end of
the chain, the sender and receiver can both verify if a value belongs to it. The
magic number is 2 bytes in length. Handshakes are used in order to establish
the secure channel and keep the nodes synchronised. This requires a significant
number of CAN message identifiers be added to the network (five new IDs for
each sender-receiver pair). The advantage of LCAP is that it only uses 2 bytes of
the payload in order to achieve the authentication property, thus having a small
overhead for authenticated message exchange. However, due to the high number
of new IDs to be introduced in the network configuration, LCAP requires a large
address space. Also, the channel setup and soft/hard synchronisation functions
require a significant number of messages to be exchanged, thus adding to the
overhead.

CaCAN has been introduced in [16], by Kurachi et al. Their approach is
to use a monitor node, which authenticates the other nodes in the network.
It detects and destroys unauthorised data frames by overwriting them with an
error frame in real time. Challenge-response authentication is used in order to
establish the secure channel. This approach requires a modified CAN controller,
the monitor node, to be fitted in every car. Also, as is the general case with
centralised authorities, if the monitor node is compromised or removed, the entire
network is compromised as well.
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Overview. This paper is organised as follows. Section 2 introduces standard
security definitions, most of it is (adapted) from the literature. Section 3 provides
the design and specification of our protocol. We give a formal security evaluation
in Section 4. In Section 5 we discuss how we deal with the shortcomings of CAN
and we provide guidelines for implementing the protocol in practise. We conclude
in Section 6.

2 Security Notions and Adversarial Model

An authentication protocol is an interactive cryptographic protocol executed
between a prover P and a verifier V. In an initial phase, both parties run a
setup(η) function, which produces a shared secret s and, potentially, public
parameters ns. After an execution of the protocol, V outputs the identity of the
prover, id, and the message data. We say that the protocol has completeness
error α if for all secrets s generated by setup(η), the honestly executed protocol
rejects the identity and message with a probability at most α.

We will show that our protocol is secure against active attacks. These allow
the adversary A to interact with the honest prover a polynomial amount of
times. Then, A interacts with the verifier only, and wins if the verifier returns
accept. The adversary interacts with V only once. An authentication protocol is
(t, Q, η)-secure against active adversaries if every probabilistic polynomial time
(PPT) adversary A, running at most t times and making Q queries to the honest
prover, has probability at most ε to win the above game.

We first need to introduce some notation. Let F2 = {0, 1} be the field of two
elements (or the set of Booleans). Fl2 denotes a bitstring of length l and F∗

2 is a
bitstring of arbitrary length. ‖ stands for the concatenation of two bitstrings.

Execution environment. Let n be the number of identifiers in the system,
and I = {id0, . . . , idn−1} be the set of all identifiers. Let P = {P0, . . . , Pn−1}
be the set of all protocol participants, where participant Pi knows the secret
parameter si and public parameters ns.

Definition 1 (Protocol setup). Let the function setup : η → (s, ns) be the
initialisation procedure of the protocol parties, where η is the security parameter
and (s, ns) is a tuple formed by the secret parameter s and the public parameters
ns.

Definition 2 (Authentication oracles). Let Π = {π(si) | si ∈ s} be a set of
oracles such that π(si) emulates party Pi of the authentication protocol.

Definition 3 (Protocol output). Let output : P → I × F∗
2 be the protocol

output function of a protocol participant Pi and outputs a tuple (idj , data)
corresponding to the last successful protocol instance of Pi, where idj ∈ I is the
identity of sender and data is the message that was sent.

We will now introduce the security notions for symmetric key authentica-
tion protocols. Most of it is standard, most of the definitions proposed here are
adapted from [20].
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Definition 4 (Matching conversations [20]). We define matching conversa-
tions as a successful execution of the authentication protocol, between two par-
ties.

We introduce the authentication game AuthΠ(η,A) and give a formal def-
inition below. The public and secret parameters are generated by calling the
setup(η) function. Then adversary A interacts with the oracles π(si) which
emulate the protocol participants which respond according to the protocol de-
scription. At some point the adversary A terminates. A wins if there is a party
Pi which has accepted, and thus outputs, (idj , data) while Pi and Pj did not
have any matching conversation.

We denote by AdvAuth
MAC (η,A) the advantage of the adversary A in breaking

the authentication protocol.

Experiment AuthΠ(η,A)
ns, s← setup(η)
BΠ(ns,s)(η, ns)
winif ∃ i, j, data : output(Pi) = (idj , data) is the output of
a party Pi and, parties Pi and Pj did not have any matching
conversation.

Definition 5 (Authentication Protocol Security). An authentication pro-
tocol is said to be secure if for all PPT adversaries A, the probability that A
wins the game AuthΠ(η,A) is a negligible function of η:

AdvAuth
MAC (η,A) ≤ ε(η)

Message Authentication Codes

A message authentication code is a set of three algorithms {KG, MAC, Verify},
with associated key space K, message space M and MAC space Φ.

The standard security notion for a MAC is unforgeability under a chosen
message attack (uf-cma). The secret key K is generated by calling the key gen-
eration algorithm KG of the MAC. Then, adversary B makes up to Q queries to
the MAC(K, ·) and Verify(K, ·, ·) algorithms. At some point, B terminates and
outputs a tuple (m, φ), where m ∈M is a message and φ ∈ Φ is a MAC. Adver-
sary B wins if it did not query MAC(K,m) and φ verifies for message m, under
the secret key K.

We denote by Advuf–cma
MAC (η,B, Q) the advantage of the adversary B in forging

a messaged under a chosen message attack for MAC, on the security parameter
η.
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Experiment UF–CMAMAC(η,B, Q)
K ← KG(1η)
Invoke BMAC(K,·),Verify(K,·,·) which can make up to Q queries
to MAC(K, ·) and Verify(K, ·, ·).
(m, φ)← BMAC(K,·),Verify(K,·,·)

winif
1. Verify(K,m, φ) = accept

2. A did not already request MAC(K,m)

Definition 6 (UF–CMA Security). We say that MAC is (t, Q, η)-secure
against uf–cma adversaries if for any adversary B running in time t the experi-
ment above, we have:

Advuf–cma
MAC (η,B, Q) ≤ ε(η)

Assumption 1 (MAC indistinguishability from random). We assume
that the output of the MAC algorithm is computationally indistinguishable from
random and, the output of the key generation (KG) function of the MAC algo-
rithm and the output of the MAC function have the same distribution.

Adversarial model. We consider a Dolev-Yao adversary [6], who controls the
network. In particular, she can passively monitor the network, reading all data
passing through the CAN and send messages with any id. She can also send error
frames to destroy current data or remote frames. However, in practise, the CAN
error handling limits the attacker’s capabilities in this respect.

3 LeiA: A Lightweight Authentication Protocol for CAN

This section outlines the design of LeiA, with a detailed description of each
function of the authentication protocol.

The CAN bus uses a publish-and-subscribe architecture model, where one
ECU can broadcast a message with a certain identifier (idi). The identifier is not
a way to identify the source or destination of a message, therefore, our protocol
provides unidirectional authentication, with a method of signalling if any of the
subscribed ECUs have gone out of sync/authentication failed.

Each protocol participant which needs to authenticate data, will need to store
a tuple

〈
idi,Kidi , eidi ,K

e
idi
, cidi

〉
per relevant CAN identifier, where:

– the identifier idi is a CAN ID;
– the key Kidi is a 128-bit long term symmetric key that is used to derive the

session key;
– the epoch eidi is a 56-bit counter; the value is incremented at every vehicle

start-up or when the counter cidi overflows; participates in the generation of
the session key;

– the session key Ke
idi

is a 128-bit key used for generating the MAC; re-
generating the session key when the epoch eidi changes ensures that only
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a small amount of data is authenticated under the same key; also, if the ses-
sion key becomes compromised, the attacker can compute valid MACs only
until the epoch changes (limited time);

– the counter cidi is a 16-bit counter included in the Message Authentication
Code (MAC) and is sent within the Data Frame containing the MAC, in
order to provide freshness.

The long term keys and epochs are assumed to be stored in tamper-resistant
memory. Updating the set of keys (e.g. if adding or replacing a node in the net-
work) should require direct physical access to the involved nodes and, therefore,
could only be done by an authorised repairs shop. How exactly this is done is
beyond the scope of this paper.

We describe below the functions of the protocol for a pair of nodes: sender
S, which is the broadcaster of messages with the identifier idi, and receiver R,
which is the node subscribed to messages broadcast on the identifier idi.

The authentication protocol LeiA has an associated key space K ∈ F128
2 ,

message space M∈ F∗
2 and MAC space Φ ∈ F64

2 .

Protocol setup. The function setup : η → (s, ns) is the initialisation procedure
of the ECUs, where η is the security parameters and (s, ns) is a tuple formed
by the secret parameter s and the public parameters ns. The secret parameter
s =

〈
Kid0 , . . .Kidn−1

〉
is computed by running the key generation algorithm

KG(1η) of the MAC for each identity idi, with Kidi ∈ K. The public parameters
are ns =

〈
(cid0 , eid0), . . . , (cidn−1

, eidn−1
)
〉
, where cidi ∈ F16

2 is the counter and
eidi ∈ F56

2 is the epoch. Both the counter and epoch are initialised to zero, for
each identity idi. The session key generation function is then called for each
identity idi, in order to generate the session key Ke

idi
.

Session key generation (Figure 1).
Let session key gen : K×F56

2 → K be the session key generation function. This
function takes as input a long term symmetric key Kidi and an epoch eidi , both
associated with an identity idi, and outputs the session key Ke

idi
computed as

follows:

1. increment epoch: eidi ← eidi + 1
2. apply the MAC algorithm on the epoch:

Ke
idi ← MAC(Kidi , eidi)

3. reset counter to zero: cidi ← 0

Sending authenticated messages (Figure 2).

In order to send an authenticated message, the sender first needs to update
the counter cidi . If cidi overflows, then the epoch eidi is incremented and cidi is
reset to 0 (see Algorithm 1). It then calls the MAC algorithm which takes as
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Session key generation
session key gen(Kidi, eidi)

〈idi, Kidi, eidi〉 〈idi, Kidi, eidi〉
Sender Receiver

increase eidi increase eidi

Ke
idi

= MAC(Kidi, eidi) Ke
idi

= MAC(Kidi, eidi)

reset cidi reset cidi

Figure 1. Session key generation between sender S and receiver R for message with
identifier idi.

input the session key Ke
idi

, the counter cidi and the message data, and produces
as output a MAC φ ∈ Φ computed as:

φ = MAC(Ke
idi , cidi , data)

The sender then transmits the counter, data and MAC. After reading the
values, the receiver updates the counters and verifies the MAC.

Sending authenticated messages〈
idi, K

e
idi
, cidi

〉 〈
idi, K

e
idi
, cidi

〉
Sender Receiver

update counters()

cidi, data

cidi,MAC(Ke
idi
, cidi, data)

update counters()

Verify MAC

Figure 2. Message authentication between sender S and receiver R for message with
identifier idi.

Resynchronisation (Figure 3).
If a MAC cannot be verified, the receiver sends an AUTH FAIL signal to the
sender. When an AUTH FAIL message is read, the sender S broadcasts a mes-
sage containing its current epoch value, a MAC of the epoch and counter cidi ,
then proceeds with normal data transmission. This will help the receiver nodes
resynchronise their epoch and counter.
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Algorithm 1 update counters() function

Require: counter cidi , epoch eidi , LTSK Kidi

Ensure: cidi and eidi are incremented accordingly
1: if cidi = 0xFFFF then
2: if eidi = 0xFFFFFFFFFFFFFF then
3: eidi ← 0x00000000000000

4: else
5: eidi ← eidi + 1
6: end if
7: cidi ← 0x0000

8: call session key gen(Kidi , eidi)
9: else

10: cidi ← cidi + 1
11: end if

Resynchronisation
resync(Ke

idi
, cidi , eidi , data)

〈
idi, K

e
idi
, cidi , eidi

〉 〈
idi, K

e
idi
, cidi , eidi

〉
Sender Receiver

AUTH FAIL

update counters()

cidi , eidi

cidi ,MAC(Ke
idi
, cidi , eidi)

check eS‖cS > eR‖cR

Verify MAC of e

update eidi ← eS, cidi ← cS
Ke

idi
← session key gen(Kidi , eidi)

cidi , data

cidi ,MAC(Ke
idi
, cidi , data)

where:
- ‖ stands for concatenation
- eS and cS are epoch and
counter received from Sender
- eR and cR are epoch and
counter stored by Receiver

Verify MAC of data

Figure 3. Message authentication failure and resynchronisation procedure, between
sender S and receiver R for message with identifier idi.
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R will only update eidi and cidi if the values are higher (eidi received can
be equal to eidi stored) than the stored ones. If the new counter is lower than
the receiver’s counter, it means there is an attacker performing a replay attack,
therefore the data is discarded and the counter not incremented.

Most common cause for a MAC to fail verification, in the context of the CAN,
is the de-synchronisation of counter cidi and epoch eidi values. Not all nodes join
the network at the same time, therefore the counters will be outdated and the
receiver will need to request the current values from the sender. A complete
protocol outline is given in Figure 4.

Protocol outline

〈idi, Kidi, cidi, eidi〉 〈idi, Kidi, cidi, eidi〉
Sender Receiver

session key gen(Kidi, eidi)

update counters()

cidi, data

cidi,MAC(Ke
idi
, cidi, data)

update counters()

yes noVerify MAC

resync(Ke
idi
, cidi, eidi, data)

Figure 4. Communication between sender S and receiver R for message with identifier
idi – LeiA protocol outline: first, the session keys are generated by both participants;
then, S can send authenticated message to R; R verifies the MAC of the received
message; if the verification fails, the resynchronisation is initialised, otherwise, the
message is accepted.

4 Security Analysis

This section analyses the security of LeiA under the unforgeability assumption
of the MAC scheme under chosen message attacks.

Theorem 2. The LeiA authentication protocol is secure with respect to Defi-
nition 5 (see Section 2).

Proof. Assume that there is an adversary A that breaks the AuthΠ(η,A) se-
curity of the authentication protocol LeiA. Then, we build an adversary B that
breaks the (t, Q, η)-security of the UF–CMAMAC scheme.

At the beginning, the adversary B randomly picks one target identifier id?

and a target epoch e?. Then, B runs the protocol setup function for each identity
idi.
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The adversary B executes A. For this, B needs to emulate oracles π(Kidi).
Emulating party Pi means generating the session key, and keeping track of the
counters cidi and epochs eidi , as specified in the protocol description. The session
key for an identity is regenerated every time the associated epoch is incremented.
The adversary A has access to the oracles in Π.

When transitioning from e? − 1 to e?, for identity id?, B will not use the
MAC algorithm, as described in the protocol, to generate the session key Ke?

id? .
Instead, whenever a MAC needs to be computed under the key Ke?

id? , the ad-
versary will use the MAC(·, ·) oracle from the UF–CMAMAC game. Note that
due to Assumption 1, this will be indistinguishable from the case of using the
key generation algorithm KG(·). For all other cases, it will compute it herself, by
running the MAC algorithm.

At some point, A terminates. With non-negligible probability, there must
exist a Pi which outputs an identity idj and a message m, without having a
matching conversation between Pi and Pj . In order for Pi to produce this output,
it means A has sent a message m = (c‖data) and a MAC φ = MAC(Ke

id,m)
which Pi has verified, and therefore this must be a valid MAC.

If idj = id? and e = e?, the adversary B will output (m, φ); otherwise, it will
output a tuple of random strings. As the identity id? and epoch e? are chosen at
random before the setup(η) phase, the probability that A also attacks id? and
e? is:

P(Ke?

id? = Ke
idj ) =

1

n
· 1

256

and we recall that n is the number of identifiers in the system.
In order to win the UF–CMAMAC game, the adversary needs:

1. Verify(Ke?

id? ,m, φ) = accept;
2. the MAC φ was never queried to the MAC oracle.

Condition 1. holds because φ is a valid MAC, as it was verified by party Pi.
Condition 2. holds because the MAC was never queried to the MAC oracle, as
Pi and Pj do not have a matching conversation. ut

5 Dealing with the Shortcomings of CAN

As some of the ECUs are involved in safety-critical functions such as acceleration
and ABS, latency is of prime concern. Any solution aiming at providing extra
security features, such as authentication, cannot introduce significant latency. To
this end, lightweight cryptography is best suited. Furthermore, many ECUs have
limited memory available, therefore the implementation of the protocol should
be compact as well. For this reason, our solution uses a MAC algorithm for two
different purposes: authenticating data and deriving session keys.

In order to compensate for the modest security provided by lightweight cryp-
tographic primitives, we do not use the long term secret key directly, but generate
session keys, which are used to authenticate the messages exchanged. A session
key is used to authenticate at most 216 messages, after which a new session key
is derived. This limits the amount of key-dependent data an attacker has access
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to. In case a session key is compromised, an attacker can use it either until 216

messages have been authenticated, or until the vehicle is restarted, whichever
comes first.

LeiA makes use of the extended identifier data frames. It uses the Extended
Identifier 18-bit field in order to send the 16-bit counter and a 2-bit command
code, as explained below (Figure 5). The 29-bit identifier data frames co-exist
with the 11-bit data frames without interfering with the arbitration process of
CAN, as the priority of a message is decided based on the 11-bit Identifier field.

Extended identifier
S
o
F

Identifier
S
R
R

I
D
E

2 bit command code

16 bit counter

R
T
R

r
s
v
d

DLC Data/MAC CRC EoF
A
C
K

I
F
S

Figure 5. Extended Data Frame CAN 2.0B (29-bit identifier) – placement of command
code and counter within Extended Identifier field.

We define three transmission channels over CAN:

Data Channel
All ids which are used to transmit data and signals constitute the data
channel. The data is transmitted within the payload field of the frame. The
counter cidi which is used to generate the MAC is placed in the extended
identifier field. The two leftmost bits are the command code 00, and signal
that data is being transmitted in the frame.

Authentication Channel
All ids which are used to transmit MACs make up the Authentication Chan-
nel. The MACs are transmitted on a different identifier than the data. We
propose this id be a fixed offset from the base id on which the data is sent.
It should be as close as possible to the base id, in order to avoid scheduling
issues caused by arbitration. In our example, idMAC = iddata + 1. This will
avoid messages with the same identifier being overwritten in the CAN con-
troller buffer. The counter is placed in the extended identifier field. The two
leftmost bits, which represent the command code, are defined as follows:

01: the data frame contains a MAC of data;
10: the data frame contains an epoch value eidi ;
11: the data frame contains a MAC of an epoch eidi .

Authentication Error Channel (AEC)
Each node connected to CAN has an Authentication Error Channel, AEC.
This is used for resynchronisation purposes. The AUTH FAIL signal is sent
on the AEC. Nodes which are broadcasters of messages with idi become
subscribers of the AEC of the nodes listening to idi. The AUTH FAIL signal
is defined as a set of two messages. The first data frame contains the id of
the message which failed MAC verification (idfailed), concatenated with the
lower 53 bits of the AEC epoch counter (lsb53(eidAEC

)). Sending the epoch
within the data frame ensures the receiving nodes can verify they have the
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correct values, and a resynchronisation procedure for the AEC is not needed.
The second message contains the MAC of the previous one, as shown in
Figure 6. Sending an AUTH FAIL signal is considered a rare event, therefore
overwriting messages within the buffer are not of concern, in contrast to data
transmission. Thus, we can use the same identifier (idAEC) for both message
types.

cidAEC

S
o
F

idAEC

S
R
R

I
D
E

2 bit command code

16 bit counter

R
T
R

r
s
v
d

DLC Data/MAC CRC EoF
A
C
K

I
F
S

where:
data = idfailed‖lsb53(eidAEC

)
MAC = MAC(Ke

idAEC
, cidAEC

, idfailed, lsb53(eidAEC
))

Figure 6. Data frame structure for AUTH FAIL signal.

Table 1 shows a small example of an extended communication matrix. The
identifiers in bold are the additional identifiers introduced by LeiA. Identifiers
0x005, 0x011 and 0x016 correspond to the Authentication Channel, while iden-
tifiers 0x7FD, 0x7FE and 0x7FF correspond to the Authentication Error Channel.

Table 1. Extended communication matrix example. ‘S’ stands for Sender and ‘R’ for
Receiver.

Identifier Node Node Node Node
A B C D

id = 0x004 S R

id = 0x010 R R S

id = 0x015 S R

→

Identifier Node Node Node Node
A B C D

id = 0x004 S R
id = 0x005 S R

id = 0x010 R R S
id = 0x011 R R S

id = 0x015 S R
id = 0x016 S R

id = 0x7FD S R

id = 0x7FE R S R

id = 0x7FF R S

The procedures of sending authenticated messages and re-synchronisation,
complete with command code placement are shown in Figure 7 and Figure 8.

The CAN bus has a static configuration. Due to this, LeiA can be imple-
mented in two ways, depending on the functionality of the ECU. As described
above, the protocol requires each message to be accompanied by a MAC. If
applied to all ECUs, this doubles the communication overhead. However, for
nodes not involved in safety-critical functions, the protocol can be implemented
such that one MAC is sent after n messages, where n can be decided based on
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Sending authenticated messages〈
idi, K

e
idi
, cidi

〉 〈
idi, K

e
idi
, cidi

〉
Sender Receiver

update counters()

00‖cidi, data
01‖cidi,MAC(Ke

idi
, cidi, data)

update counters()

Verify MAC

Figure 7. Message authentication between sender S and receiver R for message with
identifier idi, with command code.

Resynchronisation
resync(Ke

idi
, cidi , eidi , data)

〈
idi, K

e
idi
, cidi , eidi

〉 〈
idi, K

e
idi
, cidi , eidi

〉
Sender Receiver

AUTH FAIL

update counters()

10‖cidi , eidi
11‖cidi ,MAC(Ke

idi
, cidi , eidi)

check eS‖cS > eR‖cR

Verify MAC of e

update eidi = eS, cidi = cS
Ke

idi
= session key gen(Kidi , eidi)
update eidi ← eS, cidi ← cS

Ke
idi
← session key gen(Kidi , eidi)

00‖cidi , data

01‖cidi ,MAC(Ke
idi
, cidi , data)

where:
- ‖ stands for concatenation
- eS and cS are epoch and
counter received from Sender
- eR and cR are epoch and
counter stored by Receiver

Verify MAC of data

Figure 8. Message authentication failure and resynchronisation procedure, between
sender S and receiver R for message with identifier idi, with command code placement.
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the node’s security requirements. This allows manufacturers to choose a most
suitable trade-off between security and bandwidth for their vehicles.

The CAN is an architecture which is highly susceptible to denial of service
(DoS) attacks. LeiA is not a solution that tackles this issue, as it is out of
the scope of our goals. However, DoS attacks do not affect the security of the
protocol. In fact, under LeiA, messages that are not correctly authenticated are
not parsed, saving ECUs time and computation energy.

In the case an attacker fully compromises and takes control of an ECU, for
the ids the node broadcasts or listens on, the attacker will unavoidably be able
to generate valid MACs, but not for any other id. This is not a problem of our
protocol but an inherit limitation of using symmetric key cryptography.

An attacker can collect some AUTH FAIL answers from the sender, knowing
one of the receiver nodes is offline. When the receiver node joins the network
and sends the AUTH FAIL signal, as it does not have the correct counter and
epoch values, the attacker sends a stored answer. The receiver will accept the
message, provided the stored counter and epoch are lower than the received ones.
However, due to the design of CAN, the initial AUTH FAIL signal is also received
by the sender node, which will send the correct epoch and counter values. The
attacker can destroy these frames, but S will broadcast them again, due to the
error handling mechanism of CAN. After a number of destroyed frames, the
CAN flags the attacker as error passive, meaning it cannot destroy other frames.
Therefore, the correct message of S will be transmitted and the receiver node
will be able to update its values accordingly. Communication then resumes under
the protocol.

We would like to emphasize that all other proposed authentication protocols
from the literature are susceptible to DoS attacks and do not deal with attackers
taking full control over an ECU.

Next we elaborate on how LeiA satisfies the requirements laid out by AU-
TOSAR 4.2, Secure On Board Communication Module. Regarding freshness, the
specification states both sending and receiving sides need to maintain a Freshness
Value (e.g. counter, timestamp). In LeiA, this is achieved by the 16-bit counters
cidi , placed in the Extended Identifier field of a Data Frame. AUTOSAR recom-
mends the use of 128-bit keys, which LeiA respects though Kid. It also states
that, depending on the authentication algorithm chosen, the Message Authenti-
cation Code can be truncated, with a minimum recommended length of 64-bit.
As described in our protocol, we use 64-bit MACs, which fit in the 8-byte Pay-
load Field of a Data Frame. Furthermore, the standard requires the MAC to be
calculated based on the id, data and complete freshness value. In LeiA, the MAC
is computed based on the session key Ke

idi
, which is uniquely associated with an

identifier idi, the counter cidi and the data to be transmitted. Regarding MAC
verification failure, SecOC requires the receiver to attempt to verify for a num-
ber of times (defined by the parameter SecOCFreshnessCounterSyncAttempts),
after which the data is dropped. LeiA uses the resync procedure, in order to
keep the protocol in synch, and avoid a possible internal denial of service attack
due to the de-synchronisation of counters.
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6 Conclusion

We have proposed a new lightweight authentication protocol for CAN, LeiA,
that allows ECUs to authenticate each other, therefore preventing a number of
attacks presented in the literature. We have proven the protocol secure under
the unforgeability assumption of the MAC scheme under a chosen message at-
tack. LeiA has been designed to run under the stringent time and bandwidth
constraints of automotive applications, and is backwards compatible with ex-
isting CAN configuration. LeiA is the first AUTOSAR compliant lightweight
authentication protocol available in the literature. Also, our protocol achieves
higher security levels than previously proposed solutions, without the need of
additional hardware components or substantial implementation costs. Finally,
we have taken into consideration the real-world requirements and constraints of
the CAN bus, and discussed how we mitigated and overcame them. The prop-
erties of LeiA make it suitable for deployment in automotive applications as it
strikes the right balance between practicality, cost, latency and security.
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