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1 Introduction

Over the last few decades, two main stream approaches have been developed
for the analysis of security protocols. On the one hand, the cryptographic
approach considers an arbitrary computationally-bound adversary that in-
teracts with honest participants and tries to break a security goal. This
model is satisfactory as it deals with every efficient attacker. On the other
hand, the logic or symbolic approach idealizes the security properties of the
cryptographic primitives, which are axiomatized in a logic. Moreover, the
capabilities of the adversary are also specified by a set of inference rules.
This approach is appealing because there are automated techniques for the
verification of some security properties.

This chapter further relates this two approaches considering commitment
schemes in the presence of active adversaries. Recall from the introduction
and the previous chapter that this map relates messages that are observa-
tionally equivalent in the symbolic world to indistinguishable distributions
over bitstrings. Such a map allows one to use formal methods, possibly even
automated, to reason about security properties of protocols and have those
reasonings be valid also in the computational setting.

Several extensions to the original Abadi-Rogaway logic [AR02] have been
proposed in the literature. These extensions deal with public key encryption
[MW04, Her05], key cycles [ABHS05], partial information leakage [ABS05],
active instead of passive adversaries [MW04, JLM05], and more realistic se-
curity notions [AW05]. Other extensions add new primitives to the logic
such as bilinear pairings [Maz07], modular exponentiation [BLMW07] and
hash functions [CKKW06, GvR06, GvR08]. There are also frameworks deal-
ing with generic equational theories [BCK05, ABW06, KM07]. So far there
is no work in the literature, that we are aware of, that relates these two
approaches for commitment schemes.
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Commitment schemes are fundamental cryptographic primitives and are
used in protocols like zero-knowledge proofs [GMW91], contract signing [EGL85],
and can be used for bidding protocols. A commitment consists of two phases:
the commitment phase where the principals commit to a message without
revealing any information; and the opening phase where the principals reveal
the message and it is possible to verify that this message corresponds to the
value committed to during the commitment phase. After the commitment
phase it should be infeasible to open the commitment to a different value
than the one committed. This property is called binding. In the context of
bidding protocols, non-malleability is also a desirable property. This means
that an adversary cannot modify an intercepted commitment, say into a
commitment to a slightly higher bid.

Our contribution. The first objective of this chapter is to find sufficient
security assumptions to give a sound computational interpretation of com-
mitments schemes in the Dolev-Yao model, under active adversaries. Pur-
suing that objective we propose a new indistinguishability-based security
definition for commitment schemes in the presence of adaptive adversaries.
Then we give a novel generic construction for a non-malleable commitment
scheme based on one-way trapdoor permutations. This construction is se-
cure with respect to our new definition and has some additional properties
such as being non-interactive, perfectly binding and reusable, which makes it
of independent interest. This new definition allows us to prove soundness of
the Dolev-Yao model extended with commitments, following the directions
of Micciancio and Warinschi [MW04]. This paper is an extended version
of [GGvR08].

Overview. Section 3 introduces basic notation and definitions from the
literature. Section 4 elaborates on different definitions of non-malleability
for commitment schemes and discusses the relations among them. In Sec-
tion 5 we propose a new commitment scheme and we give a security proof.
Section 2 describes symbolic protocol executions, its computational coun-
terparts and the map between them and also states the soundness result.
Finally in Section 7 there are some concluding remarks.

2 Symbolic Protocols

We are going to apply this theory to give sound computational interpretation
to symbolic commitments. Recall from the introduction that the symbolic
approach to protocol verification deals with symbolic or algebraic messages
and idealized cryptographic primitives. In this setting the adversary is un-
bounded in running time and has full control over the communication media
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but is completely incapable of breaking the underlying cryptographic prim-
itives.

We now describe the message space and the closure operator. These
messages are used to formally describe cryptographic protocols. The closure
represents the knowledge that can be extracted from a message, and it is used
to define what valid algebraic protocol runs are. Intuitively a protocol run is
valid if every message sent by a principal can be deduced from its knowledge
except maybe for some fresh randomness. Much of this is standard (see,
e.g., [AR02, MW04, MP05, GvR06]), except that we model commitments
and decommitments as well as encryption.

Definition 2.1. Let Nonce be an infinite set of nonce symbols, Const
a finite set of constant symbols, Key an infinite set of key symbols, and
Random an infinite set of randomness labels. Nonces are denoted by
n, n′, . . . , constants by c, c′, . . . , keys by k, k′, . . . , and randomness labels by
r, r′, . . . . Using these building blocks, messages are constructed using sym-
bolic encryption, commitments, decommitments, and pairing operations:

Msg 3 m := c | n | {|m|}rk | comr(m) | decr(m) | 〈m,m〉.

A message of the form {|m|}rk is called an encryption and the set of all such
messages is denoted by Enc. Similarly, messages of the form comr(m) are
called commitments and the set of all these messages is denoted by Com.
The messages of the form decr(m) are called decommitments and the set
of all these messages is denoted by Dec. In a protocol run decr(m) is a
valid decommitment of comr′(m′) only if m = m′ and r = r′. We say that
elements in Const∪Nonce∪Key are primitive and we denote this set by
Prim. For a public key k we denote its associated private key as k−1.

The closure of a set U of messages is the set of all messages that can be
constructed from U using tupling, detupling, commitment, decommitment,
and encryption and decryption. It represents the information an adversary
could deduce knowing U . Note that, due to secrecy of the commitment
scheme, knowing comr(m) does not provide an adversary with any informa-
tion about m.

Definition 2.2 (Closure). Let U be a set of messages. The closure of U ,
denoted by U , is the smallest set of messages satisfying:

1. Const ⊆ U ;

2. U ⊆ U ;

3. m,m′ ∈ U =⇒ 〈m,m′〉 ∈ U ;

4. m ∈ U ∧ k ∈ U =⇒ {|m|}rk ∈ U ;

5. {|m|}rk ∈ U ∧ k−1 ∈ U =⇒ m ∈ U ;
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6. m ∈ U =⇒ comr(m), decr(m) ∈ U ;

7. decr(m) ∈ U =⇒ m ∈ U ;

8. 〈m,m′〉 ∈ U =⇒ m,m′ ∈ U .

Next we need to find the right security notions to give sound computa-
tional interpretation to symbolic encryption and commitments.

3 Computational Setup

This section introduces syntaxis and security definitions for different crypto-
graphic primitives. Much of this is standard, we refer the reader to [GM84,
RS92] and [NY90] for a thorough explanation. Some of this primitives will
be used to interpret algebraic operations and some of them are used as
building blocks for our construction of Section 5.

3.1 Commitment Schemes

Definition 3.1. A commitment scheme is a triple Ω = (TTP,Snd,Rcv) of
probabilistic polynomial-time algorithms. TTP, the trusted third party, takes
as input the security parameter 1η and produces a common reference string
σ. We require that |σ| ≥ p(η) for some non-constant polynomial p. Snd, the
sender, takes as input σ and a message m and produces a commitment com
to this message and a corresponding decommitment dec. Rcv, the receiver,
takes as input σ, com, and dec and produces a message or ⊥.

MeaningfulnessΩ(A):
σ ← TTP(1η)
m← A(σ)
(com, dec)← Snd(σ,m)
m1 ← Rcv(σ, com, dec)
return m 6= m1

SecrecyTTP,Snd(A1, A2):
σ ← TTP(1η)
m0,m1, s← A1(σ)
b← {0, 1}
(com, dec)← Snd(σ,mb)
b′ ← A2(s, com)
return b = b′

BindingTTP,Rcv(A):
σ ← TTP(1η)
(com, dec1, dec2)← A(σ)
m1 ← Rcv(σ, com, dec1)
m2 ← Rcv(σ, com, dec2)
return m1 6= ⊥ 6= m2

∧ m1 6= m2

The following three conditions must hold.

1. For all probabilistic polynomial-time algorithms A, the probability
P[MeaningfullnessΩ(A)] is a negligible function of η.
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2. For all probabilistic polynomial-time algorithms (A1, A2), the advan-
tage
|P[SecrecyTTP,Snd(A1, A2)]− 1/2| is a negligible function of η.

3. For all probabilistic polynomial-time algorithms A, the probability
P[BindingTTP,Rcv(A)] is a negligible function of η.

Definition 3.2. A commitment scheme is said to be perfectly binding if for
all unbounded algorithms A, the probability P[BindingTTP,Rcv(A)] is zero.

Definition 3.3. A commitment scheme is said to be perfectly hiding if for all
unbounded algorithms (A0, A1), |P[SecrecyTTP,Snd(A1, A2)]− 1/2| is zero.

3.2 Encryption Schemes

Definition 3.4. An encryption scheme is a triple Π = (K, E ,D) of proba-
bilistic polynomial-time algorithms. K takes as input the security parameter
1η and produces a key pair (pk, sk) where pk is the public encryption key
and sk is the private decryption key. E takes as input a public key pk
and a plaintext m and outputs a ciphertext. D takes as input a private
key sk and a ciphertext and outputs a plaintext or ⊥. It is required that
P[(pk, sk)← K(1η); c← E(pk,m);m′ ← D(sk, c) : m = m′] = 1.

IND-CCA Π(A0, A1) :
(pk, sk)← K(1η)
m0,m1, s← AD

0 (pk)
b← {0, 1}
c← E(pk,mb)
b′ ← AD

1 (s, c)
return b = b′

Definition 3.5. An encryption scheme Π = (K, E ,D) is said to be IND-
CCA secure if for all probabilistic polynomial-time adversaries A = (A0, A1)
the advantage of A, defined as |P[IND-CCAΠ(A0, A1)]−1/2|, is a negligible
function of η. This adversary has access to a decryption oracle D that on
input c′ outputs D(sk, c′) with the only restriction that c 6= c′.

3.3 One-time Signatures

Definition 3.6. A signature scheme is a triple (Gen,Sign,Vrfy) of proba-
bilistic polynomial-time algorithms. Gen takes as input the security parame-
ter 1η and produces a key pair (vk, sk) where vk is the signature verification
key and sk is the secret signing key. Sign takes as input sk and a message m
and produces a signature s of m. Vrfy takes as input vk, a message m and
a signature s and outputs whether or not s is a valid signature of m.
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OTSΣ(A0, A1) :
(vk, sk)← Gen(1η)
m, s← A0(vk, 1η)
σ ← Sign(sk,m)
m′, σ′ ← A1(s, σ)
return σ 6= σ′ ∧ Vrfy(vk, (m′, σ′))

Definition 3.7. A signature scheme Σ = (Gen, Sign,Vrfy) is a strong, one-
time signature scheme if the success probability of any probabilistic polynomial-
time adversary (A0, A1) in the game OTSΣ(A0, A1) is negligible in the se-
curity parameter η.

3.4 Tag-based Encryption

Definition 3.8. A tag-based encryption scheme (TBE) handling tags of
length ` (where ` is a polynomially-bounded function) is a triple of proba-
bilistic polynomial-time algorithms (KeyGen,Enc,Dec). KeyGen takes a se-
curity parameter 1η and returns a public key pk and secret key sk. The
public key pk includes the security parameter 1η and `(η); as well as the
description of sets M,R, C, which denote the set of messages, randomness
and ciphertexts respectively. These descriptions might depend on the public
key pk. Enc takes as inputs pk, a tag t ∈ {0, 1}` and m ∈ M. It returns a
ciphertext c ∈ C. Dec takes as inputs the secret key sk, a tag t and c ∈ C,
and returns m ∈ M or ⊥ when c is not a legitimate ciphertext. For the
sake of consistency, these algorithms must satisfy Dec(sk, t, c) = m for all
t ∈ {0, 1}`, m ∈M, where c = Enc(pk, t,m).

Definition 3.9. Let E = (KeyGen,Enc,Dec) be a TBE scheme. We say
E is IND-TBE-CCA secure if for any 3-tuple of PPT oracle algorithms
(A0, A1, A2) and any polynomially-bounded function ` the advantage in the
following game is negligible in the security parameter 1η:

A0(1η, `(η)) outputs a target tag t. KeyGen(1η) outputs (pk, sk) and
the adversary is given pk. Then the adversary A1 may ask polynomially-
many queries to a decryption oracle D(t′, c′) = Dec(sk, t′, c′) for pairs tag-
ciphertext (t′, c′) of its choice, with the restriction t 6= t′. At some point, A1

outputs two equal length messages m0,m1. A bit b ← {0, 1} is chosen at
random and the adversary is given a challenge ciphertext c← Enc(pk, t,mb).
A2 may continue asking the decryption oracle for pairs tag-ciphertext (t′, c′)
of its choice, with the restriction t 6= t′. Finally, A2 outputs a guess b′.
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IND-TBE-CCA E(A0, A1, A2) :
t, s1 ← A0(1η, `(η))
(pk, sk)← KeyGen(1η)
m0,m1, s2 ← AD

1 (s1,pk)
b← {0, 1}
c← Enc(pk, t,mb)
b′ ← AD

2 (s2, c)
return b = b′

We define the advantage of A as |P[IND-TBE-CCA(A)]− 1/2|.

3.5 Interpretation

Suppose we have an encryption scheme Π, a commitment scheme Ω and a
function that maps symbolic constants to constant bitstrings. Then we can
define a mapping [[·]] from algebraic messages m ∈Msg to distributions over
bitstrings [[m]] ∈ Str. This interpretation maps nonces to random bitstrings
of length η; encryptions are interpreted by running the encryption algorithm
E and for interpreting commitments and decommitments we use the commit
algorithm Snd.

In order to achieve sound interpretation we will explore the security
requirements on these cryptographic primitives. For the case of encryp-
tion it is satisfactory to use any IND-CCA encryption scheme as shown
in [MW04]. For the case of commitments, using standard security definitions
is not straightforward as they are not strong enough nor indistinguishability
based. To achieve sound interpretation of the idealized Dolev-Yao model,
throughout the next section we elaborate on a convenient security definition
for commitment schemes.

4 Definitions of Non-malleability

As noticed by Fischlin and Fischlin [FF00], there are two different versions
of non-malleability for commitment schemes, namely: NM with respect to
opening (NMO) and NM with respect to commitment (NMC). NMC was the
version originally proposed by Dolev, Dwork and Naor in [DDN91]. It means
that given a commitment to a message m, the adversary is unable to build
a different commitment to m′, with m related to m′. This version of non-
malleability is appropriate while considering perfectly binding commitments
and only makes sense for schemes that are not perfectly hiding.

The other version NMO, seemingly weaker, means that an adversary that
is first given a commitment to m and on a second stage its decommitment, is
unable to find a different commitment-decommitment pair that decommits
to a message m′ related to m. This notion was studied by Di Crescenzo,
Ishai and Ostrovsky [CIO98] and later by Di Crescenzo, Katz, Ostrovsky
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and Smith [CKOS01]. Intuitively a commitment scheme is non-malleable if
the adversary can do no better than a simulator which has no information at
all about the message that was committed to. Next we recall their definition.

NMO Ω(A1, A2, D,R): ;
σ ← TTP(1η) ;
m1 ← D ;
com1, dec1 ← Snd(σ,m1) ;
com2 ← A1(σ, com1) ;
dec2 ← A2(σ, com1, com2, dec1) ;
m2 ← Rcv(σ, com2, dec2) ;
return com1 6= com2 ∧R(m1,m2) ;

SIM(S,D,R): ;
m1 ← D ;
m2 ← S(1η, D) ;
return R(m1,m2) ;

Definition 4.1 (Non-malleability [CIO98, CKOS01]). Let Ω = (TTP,Snd,Rcv)
be a commitment scheme. Ω is called non-malleable if for all PPT adver-
saries (A1, A2) there is a PPT simulator S such that for all distributions D
and all relations R,

P[NMOΩ(A1, A2, D,R)]− P[SIM(S,D,R)]

is a negligible function of η.

Remark 4.1. To prevent that the adversary trivially wins, by refusing to
decommit, the following restriction over the relation R is imposed: for all
messages m, we have R(m,⊥) = 0.

4.1 NMC-CCA: Non-malleability Against Chosen Commit-
ment Attacks

The previous definition deals with non-malleability with respect to open-
ing. For the relation between symbolic and computational cryptography we
need the stronger notion of non-malleability with respect to commitment.
Intuitively, this is because in the algebraic setting comr(m′) cannot be de-
duced from comr(m), with m′ somehow related to m. Therefore we adapt
the NMO definition to non-malleability with respect to commitment and we
strengthen it by incorporating active adaptive security, allowing the adver-
sary to mount chosen commitment attacks (CCA in short). Specifically, we
empower the adversary with access to a decommitment oracle D. To do so,
from now on, we restrict our attention to non-interactive, perfectly binding
trapdoor commitment schemes. The oracle D has access to the trapdoor
information. It takes as argument a commitment c with the restriction that
c is not equal to the challenge commitment com1. Then if the commitment
c has been correctly generated, the oracle returns a decommitment d which
opens c, and otherwise it outputs ⊥.
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NMC-CCAΩ(A0, A1, R): ;
σ ← TTP(1η) ;

D, s1 ← AD
0 (σ) ;

m1 ← D(σ) ;
com1, dec1 ← Snd(σ,m1) ;

com2, sr ← AD
1 (s1, com1) ;

dec2 ← D(com2) ;
m2 ← Rcv(σ, com2, dec2) ;
return com1 6= com2∧R(sr,m1,m2)
;

SIM-CCATTP(S0, S1, R):
;
σ ← TTP(1η) ;
D, s1 ← S0(σ) ;
m1 ← D(σ) ;
;
com2, sr ← S1(s1) ;
dec2 ← D(com2) ;
m2 ← Rcv(σ, com2, dec2) ;
return R(sr,m1,m2) ;

Definition 4.2 (NMC-CCA). Let Ω = (TTP,Snd,Rcv) be a commitment
scheme. Ω is called NMC-CCA secure if for all PPT adversaries (A0, A1)
there is a PPT simulator (S0, S1) such that for all relations R (with the
same restriction as in 4.1),

P[NMC-CCAΩ(A0, A1, R)]− P[SIM-CCATTP(S0, S1, R)]

is a negligible function of η.

4.2 An Indistinguishability Based Definition

Next we introduce an equivalent formulation of NMC-CCA that is more
convenient to prove soundness of the Dolev-Yao model with respect to com-
mitment schemes.

IND-COM-CCAb(A0, A1): ;
σ ← TTP(1η) ;

m0,m1, s1 ← AD
0 (σ) ;

com1, dec1 ← Snd(σ,mb) ;

b′ ← AD
1 (s1, com1) ;

return b′ ;

Definition 4.3 (IND-COM-CCA). Let Ω = (TTP,Snd,Rcv) be a com-
mitment scheme. Ω is said to be IND-COM-CCA secure if for all PPT
adversaries (A0, A1)

P[ IND-COM-CCA1(AD0 , A
D
1 ) = 1]−P[ IND-COM-CCA0(AD0 , A

D
1 ) = 1]

is a negligible function of η.

Next we show that NMC-CCA and IND-COM-CCA are equivalent. We
discuss it briefly as it is basically the proof that NM-CCA and IND-CCA
are equivalent, adapted to commitment schemes.

Theorem 4.4. Let Ω = (TTP, Snd,Rcv) be a commitment scheme. Then Ω
is IND-COM-CCA secure if and only if Ω is NMC-CCA secure.
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Proof. (IND-COM-CCA ⇐ NMC-CCA) Let (B0, B1) be an adversary for
IND-COM-CCA. Then we build the following adversary (A0, A1) against
NMC-CCA.

Algorithm AD
0 (σ) :

m0,m1, s1 ← BD
0 (σ)

D ← U({m0,m1})
return D, (σ,m0,m1, s1)

Algorithm AD
1 ((σ,m0,m1, s1), c1) :

b← BD
1 (s1, c1)

c2 ← Snd(σ,mb)
return c2, ε

where U is the uniform distribution. Now take the relation R(sr,m1,m2)
as m1 equal to m2. It should be clear, after unfolding (A0, A1) in the
NMC-CCA game, that this adversary has the same advantage that (B0, B1)
has against IND-COM-CCA.

(IND-COM-CCA ⇒ NMC-CCA) Let (A0, A1) be an adversary for NMC-
CCA. Then we build the following adversary (B0, B1) against IND-COM-
CCA.

Algorithm BD
0 (σ) :

D, s1 ← AD
0 (σ)

m0,m1 ← D
return m0,m1, (σ,m0,m1, s1)

Algorithm BD
1 ((σ,m0,m1, s1), c1) :

c2 ← AD
1 (s1, c1)

m← D(c2)
if m = m1 then return 1
else return 0

Again, just by unfolding these adversaries in the IND-COM-CCA game, it is
easy to verify that they have the same advantage that (A0, A1) has against
NMC-CCA.

It remains to show that such a security notion for a commitment scheme
is achievable. In the next section we give a practical construction that
achieves IND-COM-CCA security.

5 The Construction

We now propose a new construction for IND-COM-CCA that is computa-
tionally hiding, perfectly binding, reusable, non-interactive, non-malleable
under adaptive adversaries, and provably secure under the assumption that
trapdoor permutations exist.

Next we outline the idea of our construction. As pointed out by Di
Crescenzo, Katz, Ostrovsky and Smith [CKOS01], an IND-CCA secure pub-
lic key encryption scheme can be converted into a perfectly binding non-
malleable commitment scheme. Let Π = (KeyGen,Enc,Dec) be an indis-
tinguishable against adaptive chosen-ciphertext attacks secure public key
encryption scheme. The idea is to commit to a message m by encrypt-
ing it using random coins r; commitment is set to be the ciphertext c =
Enc(pk,m; r); de-commitment is set to be the pair (m, r); finally the open-
ing algorithm takes (c,m, r) and checks whether c = Enc(pk,m; r). When
trying to directly use this construction to instantiate an IND-COM-CCA
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commitment scheme one might not be able to simulate the de-commitment
oracle. The reason is that given a ciphertext/commitment c, one recovers
the purported embedded message m by using the decryption algorithm, but
not necessarily the randomness r. One way to break through this situation
is to include in the commitment a second ciphertext c′ = Enc(pk′, r; r′) en-
crypting the randomness r used in the first ciphertext c = Enc(pk,m; r).
This is the key idea of our construction. We additionally use one-time sig-
natures and this together with tag-based encryption schemes ensure the
de-commitment oracle does not leak vital information.

Let Π = (KeyGen,Enc,Dec) be a tag based encryption scheme and let
Σ = (Gen,Sign,Vrfy) be a signature scheme. Define (TTP, Snd,Rcv) as fol-
lows:

– TTP runs KeyGen(1η) twice to obtain (pk1, sk1) and (pk2, sk2). The
common reference string includes pk1,pk2.

– To commit to a message m, the sender Snd computes and outputs the
commitment C = (vk, c1, c2, s) where c1 = Enc(pk1, vk,m; r1), c2 =
Enc(pk2, vk, r1; r2), with r1, r2 ← R, (vk, sk) ← Gen(1η) and s ←
Sign(sk, (c1, c2)). The decommitment is set to be (m, r1).

– To de-commit ciphertext C = (vk, c1, c2, s) using (m, r1), the receiver
Rcv first checks if the signature on (c1, c2) is correct, and afterwards
whether or not c1 = Enc(pk1, vk,m; r1).

We assume R =M.

Theorem 5.1. Assume that (KeyGen,Enc,Dec) is an IND-TBE-CCA secure
tag based encryption scheme and that (Gen, Sign,Vrfy) is a one-time strongly
unforgeable signature scheme. Then (TTP,Snd,Rcv) is an IND-COM-CCA
secure commitment scheme.

Proof. We transform an adversary A against the IND-COM-CCA security
of the commitment scheme into adversaries against the TBE and the OTS.
Next we will describe a sequence of games following the methodology advo-
cated in [Sho04, BR06]. Let Xi be the event that A learns the challenge bit
b in the i-th game.

Game 0. This is the unmodified IND-COM-CCA game. Trivially,
|P[X0]− 1/2| equals the advantage of A against IND-COM-CCA.

Game 1. In this game we disallow decryption queries C = (vk, c1, c2, s)
s.t. vk = vk? where (vk?, c?1, c

?
2, s

?) is the challenge commitment. Then,
we get that |P[X1] − P[X0]| is less or equal than the advantage any PPT
algorithm has in breaking the one-time strong unforgeability security of the
OTS.
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Game 2. Still decryption queries with vk = vk? are forbidden. In
this game we use the IND-CCA security of the second instance of the TBE
scheme. The components c?1 and c?2 of the challenge ciphertext are changed
to c?1 = Enc(pk?1, vk?,m?

b ; r1), and c?2 = Enc(pk?2, vk?, r′) where r′, r1 ← R.
Now, we have |P[X2]− P[X1]| is less or equal than the advantage any PPT
algorithm has in breaking the selective IND-CCA security of the TBE.

Finally it is shown that |P[X2]− 1/2]| is bounded by the advantage any
PPT algorithm has in breaking the selective IND-CCA security of the first
instance of the TBE.

Putting everything together, we get that |P[X0] − 1/2| is bounded by
the advantages in breaking the OTS scheme plus twice the advantage in
breaking the selective IND-CCA of the TBE scheme. Next we describe the
concrete adversaries,

Game 0 ≈ Game 1. Assume that there is an adversary (A0, A1)
that is able to distinguish the environments of Game 0 and 1. Then we
build an adversary (B0, B1) against the one-time strong unforgeability of
the signature scheme.

Algorithm B0(1η, vk) :
pk1, sk1 ← KeyGen(1η)
pk2, sk2 ← KeyGen(1η)
m0,m1, s1 ← AD

0 (pk1,pk2)
b← {0, 1}
r1 ← R
c1 ← Enc(pk1, vk,mb; r1)
c2 ← Enc(pk2, vk, r1)
return (c1, c2), (s1||vk||c1||c2||sk1||sk2)

and B1((s1||vk||c1||c2||sk1||sk2), s) = [b′ ← AD1 (s1, (vk, c1, c2, s))]. Calls to
the decommitment oracle D(vk′, c′1, c

′
2, s
′) are simulated by firstly verifying

the signature Vrfy(vk′, (c′1, c
′
2), s′). If the verification succeeds then the oracle

returns the pair (Dec(sk1, vk′, c′1),Dec(sk2, vk′, c′2)) and otherwise it outputs
⊥. If the adversary eventually performs a query D(vk′, c′1, c

′
2, s
′) with vk′ =

vk then the execution of the adversary is aborted and B outputs ((c′1, c
′
2), s′),

thus breaking the one-time strong unforgeability of the signature scheme.

Game 1 ≈ Game 2. Assume that there is an adversary (A0, A1)
that is able to distinguish the environments of Game 1 and 2. Then we
build an adversary (B0, B1, B2) against the IND-CCA security of the sec-
ond TBE. Take B0(1η, `(η)) = [(vk, sk)← Gen(1η); return vk, (vk||sk)] and
B1(s1, pk2) = [r′, r1 ← R; return r′, r1, (s1||r′||r1||pk2)] and
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Algorithm B
Osk2
2 ((vk||sk||r′||r1||pk2), c2) :

pk1, sk1 ← KeyGen(1η)
m0,m1, s1 ← AD

0 (pk1,pk2)
b← {0, 1}
c1 ← Enc(pk1, vk,mb; r1)
s← Sign(sk, (c1, c2))
b′ ← AD

1 (s1, (vk, c1, c2, s))
if b = b′ then return 1
else return 0

Calls to the decommitment oracle D(vk, c1, c2, s) are simulated by firstly
verifying the signature Vrfy(vk, (c1, c2), s). If the verification succeeds then
the oracle returns (Dec(sk1, vk, c1),Osk2(c2)) and otherwise it outputs ⊥.

Finally we show that |P[X2] − 1/2]| is bounded by the advantage any
PPT algorithm has in breaking the selective IND-CCA security of the first
instance of the TBE. Assume that there is an adversary (A0, A1) for Game 2.
Then we build an adversary (B0, B1, B2) against the IND-CCA security of
the first TBE scheme. TakeB0(1η, `(η)) = [(vk, sk)← Gen(1η); return vk, (vk||sk)]
and

Algorithm B
Osk1
1 ((vk||sk),pk1) :

pk2, sk2 ← KeyGen(1η)
m0,m1, s1 ← AD

0 (pk1,pk2)
return (m0,m1), (vk||sk||pk1||s1||pk2||sk2)

Algorithm B
Osk1
2 ((vk||sk||pk1||s1||pk2||sk2), c1) :

r′ ← R
c2 ← Enc(pk2, vk, r′)
s← Sign(sk, (c1, c2))
b′ ← AD

1 (s1, (vk, c1, c2, s))
return b′

Calls to the decommitment oracle D(vk, c1, c2, s) are simulated by firstly
verifying the signature Vrfy(vk, (c1, c2), s). If the verification succeeds then
the oracle returns (Osk1(c1),Dec(sk2, vk, c2)) and otherwise it outputs ⊥.

6 Protocol Execution and State Traces

We now prove that it is possible to port proofs in the symbolic framework to
the computational one. First, for the sake of self-containment we describe
the adversarial model and the execution environment following the directions
of Micciancio and Warinschi [MW04]. We refer the reader to this paper for
a thorough explanation.

The message space and the closure operator were defined in Section 2.
Messages are used to formally describe cryptographic protocols. The closure
represents the knowledge that can be extracted from a message, and is used
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to define what valid algebraic protocol runs are. Intuitively a protocol run is
valid if every message sent by a principal can be deduced from its knowledge
except maybe for some fresh randomness. In this setting an adversary is in
control of the communication media and is able to interact with honest
participants. Consider then an adversary that has access to an oracle that
will play the role of the honest participants. This adversary can start new
sessions of the protocol and send messages to a principal of a given session
and get the respective answer back. Formally, the adversary A can perform
one of the following queries to the execution oracle O.

1. newsession([I1 . . . In]) that takes a list of user identities Ii and returns
a new session identifier s.

2. send(s, I,m) that delivers the message m to the principal I of session
s. Then O updates I’s state and returns the answer to the adversary.

In case that the adversary performs a query that is not according to the
protocol, for the specific state of the receiver, the oracle aborts the execution
of this session.

In a formal protocol, the messages exchanged are algebraic expressions
from the message algebra. A formal adversary Af will interact with the
formal oracle Of in a symbolic protocol run.

On the other hand, a computational adversary Ac is a probabilistic
polynomial-time Turing machine that operates on bitstrings. For a fixed
value of the security parameter there is a set of primitive bitstrings for con-
stants and nonces denoted by Primη. The set of bitstrings Msgη is build
from Primη by tupling, encryptions, commitments and decommitments.
There is a set Sid of session identifiers; a set Uid of user identities and a
set Vars of variables in the abstract protocol description.

Let F : Sid × Uid → (Vars → Msg,N) be the state maintained by
the formal oracle Of . On input (s, I) it returns the state of principal I
in session s together with his instruction pointer. The instruction pointer
indicates on which step of the abstract protocol this principal is. Similarly,
C : Sid×Uid→ (Vars→Msgη,N) is the state maintained by the compu-
tational oracle Oc. Assume without loss of generality that all the sessions
are created at the beginning. Then, a formal adversary Af is just a sequence
of send(s, I,m) queries. We say that a formal adversary Af is a valid Dolev-
Yao adversary (Af ∈ DY) if each message he sends to the oracle is in the
closure of his initial knowledge plus the answers he gets from the oracle Of .
A protocol execution, thus, is the sequence of states F0, F1, . . . of the formal
oracle Of and is denoted by trace(Af ,Of ). After fixing the randomness of
the adversary and that of the oracle environment to τA and τO, we can sim-
ilarly define a computational execution trace trace(Ac(τA),Oc(τO)) as the
sequence of states C0, C1, . . . of the computational oracle Oc.
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Definition 6.1. We say that [[·]] : Prim→ Primη is an interpretation func-
tion if it is injective and structure preserving (i.e., maps formal nonces to
nonce bitstrings, formal commitments to commitments and so on).

Definition 6.2. Let F = F0, F1, . . . be a formal execution trace and let
C = C0, C1, . . . be a concrete execution trace. We say that F � C if there
exists an interpretation function [[·]] such that [[F0]] = C0, [[F1]] = C1, . . . .

The following theorem shows that a computational adversary has no
more power than an algebraic adversary.

Theorem 6.3. Let (TTP, Snd,Rcv) be an IND-COM-CCA secure commit-
ment scheme and let (K, E ,D) be an IND-CCA secure encryption scheme.
For any computational adversary Ac, the probability

P[∃Af ∈ DY : trace(Af ,Of ) � trace(Ac(τA),Oc(τO))]

is overwhelming. Here the probability is taken over the random choices τA
of the adversary and τO of the oracle.

Proof. First fix the randomness τA and τO. Running the computational ad-
versary Ac, it produces a sequence of queries/answers to/from the computa-
tional oracle. Because we know all the trapdoor information that the oracle
generates and because the adversary has to send properly typed messages,
we can de-construct any message sent into primitive terms. Choosing new
algebraic terms for each distinct primitive bitstring encountered we build a
sequence of algebraic queries which constitutes an algebraic adversary Af .
Note that for different random choices of τA and τO we get the same Af (up
to renaming) with overwhelming probability.

It remains to show that the adversary we just built is Dolev-Yao. Sup-
pose that it is not. Then Af must, at some point, send a query that contains
a non-adversarial nonce n? that is not in the closure of the messages he re-
ceived before. If this nonce occurs inside an encryption (with an unknown
key) then one can build an adversary breaking the IND-CCA security of the
encryption scheme [MW04]. Assume then that it occurs inside a commit-
ment. We now build an adversary that breaks the IND-COM-CCA security
of the commitment scheme.

This adversary simulates the environment to Ac using the de-commit or-
acle when necessary except for the query that contains n?. There it generates
two interpretations (n0, n1) for n? and gives them as challenge plaintext for
the IND-COM-CCA game. The challenger gives back a commitment to nb
where b is the challenge bit. This commitment to nb is used to answer the
oracle queries. At the moment AC outputs the interpretation of n? we can
check whether it is n0 or n1.

A formal security notion is a predicate Pf on formal traces. A protocol
Π |=f Pf if for all adversaries Af ∈ DY holds that trace(Af ,Of ) ∈ Pf .
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Similarly, a computational security notion is a predicate Pc on computa-
tional traces. A protocol Π |=c Pc if for all probabilistic polynomial-time
adversaries Ac holds that trace(Af ,Of ) ∈ Pc with overwhelming probability
(taken over the random choices of the adversary and the ones of the oracle
environment). The proof of the following theorem follows as in [MW04].

Theorem 6.4. Let (TTP, Snd,Rcv) be a IND-COM-CCA secure commit-
ment scheme and let (K, E ,D) be an IND-CCA secure encryption scheme.
Let Pf and Pc be respectively formal and computational security notions
such that for all formal traces ft and all computational traces ct it holds that
(ft ∈ Pf ∧ ft � ct) =⇒ ct ∈ Pc. Then

Π |=f Pf =⇒ Π |=c Pc .

7 Conclusions

We presented two equivalent security notions for commitment schemes: a
simulation based definition and a indistinguishability based one. We then
gave a concrete scheme satisfying this security notion. This construction is
of interest on itself as it is generic and has some interesting features like being
reusable, perfectly binding and secure against adaptive chosen-commitment
attacks. We then applied this new machinery to give sound interpretation
of symbolic commitments while considering active adversaries.
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