
Sound and Complete Computational

Interpretation of Symbolic Hashes

in the Standard Model

Flavio D. Garcia and Peter van Rossum

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

Abstract

This paper provides one more step towards bridging the gap between the formal
and computational approaches to the verification of cryptographic protocols. We
extend the well-known Abadi-Rogaway logic with probabilistic hashes and give a
precise semantic interpretation to it using Canetti’s oracle hashes. These are prob-
abilistic polynomial-time hashes that hide all partial information. We show that,
under appropriate conditions on the encryption scheme, this interpretation is com-
putationally sound and complete. This can be used to port security results from the
formal world to the computational world when considering passive adversaries. We
also give an explicit example showing that oracle hashing is not strong enough to
obtain such a result for active adversaries.

1 Introduction

The analysis of security protocols is being carried out mainly by means of
two different techniques. On the one hand, there is the logic approach, which
sees messages as algebraic objects defined using some formal language. In this
view, cryptographic operations are symbolic operations which are unbreakable.
Attackers are typically modeled as so-called Dolev-Yao attackers [DY83], hav-
ing total control over the network, having no computational limitations, and
being only (but absolutely) incapable of breaking cryptographic operations.
This view is appealing, because it is relatively easy to use and captures most
mistakes commonly made in security protocols.

On the other hand, there is the complexity-based approach. Here mes-
sages are bitstrings and cryptographic operations are functions on bit strings

Email addresses: flaviog@cs.ru.nl (Flavio D. Garcia), petervr@cs.ru.nl
(Peter van Rossum).

Preprint submitted to Elsevier 20 November 2007

satisfying certain security properties [Yao82,GM84,Gol01]. Common security
notions like secrecy, authenticity, and integrity are formulated in terms of the
probability that someone can mount a successful attack. An attacker here is
a resource bounded probabilistic algorithm, limited by running time and/or
memory. The complexity based methods are more general and more realistic,
but also more complex to use.

In the last few years much research has been done to relate these two per-
spectives [AR02,AJ01,MW04a,MW04b,Her05,GGvR08]. Such a relation takes
the form of a function mapping symbolic messages m to (distributions over)
bitstrings [[m]]. This map then should relate messages that are observationally
equivalent in the symbolic world (meaning that a Dolev-Yao attacker can see
no difference between them) to indistinguishable distributions over bitstrings
(meaning that a computationally bounded adversary can only with negligible
probability distinguish the distributions). Such a map allows one to use for-
mal methods, possibly even automated, to reason about security properties of
protocols and have those reasonings be valid also in the computational world.

The work carried out in the literature on relating these two perspectives
mainly deals with symmetric encryption [AR02,MW04a] and public key en-
cryption [MW04b,Her05]. Several extensions have been proposed dealing, for
instance, with key cycles [ABHS05]; partial information leakage [ABS05]; ac-
tive instead of passive adversaries [MW04b] and more realistic security no-
tions [AW05]. Other extensions add new primitives to the logic such as bilin-
ear pairings [Maz07], modular exponentiation [BLMW07], and there are also
frameworks dealing with generic equational theories [BCK05,ABW06,KM07].

Micciancio and Warinschi [MW04a] briefly but explicitly question if this
logical approach can be extended to, among other things, collision resistant
hashes. Backes, Pfitzmann, and Waidner [BPW06] show that in their universal
composability framework [PW00], which deals with active adversaries, a sound
interpretation of hashes cannot exist, but that it is possible to give a sound
interpretation of formal hashes in the universal composability framework using
random oracles. Similar results, also in the random oracle model, have been
recently shown by Janvier et al. [JLM07] for passive adversaries and by Cortier
et al. [CKKW06] for active adversaries. Random oracles are often used in the
literature to model hash functions, although they are also often criticized for
being unsound in the standard model; there exist examples of protocols that
are secure in the random oracle model but provably insecure for every possible
instantiation with a real function [CGH04].

The problem with hashes is that in the symbolic world h(m) and h(m′)
are indistinguishable for a Dolev-Yao attacker if the attacker does not know
m or m′. In the computational world, however, the normal security definition
— it must be computationally infeasible to compute any pre-image of a hash
value or a hash collision [RS04] — does not guarantee that the hash function
hides all partial information about the message; hence there is no guarantee
that their interpretation as bitstrings [[h(m)]] and [[h(m′)]] are computationally

2

indistinguishable.

A possible solution to this can be found in the work of Canetti and oth-
ers [Can97a,CMR98] on perfectly one-way functions (a.k.a. oracle hashing).
These are computable probabilistic hash functions that hide all partial infor-
mation of their input (see Section 3.3 for the definition and an example).

Our contribution. We propose an extension to the commonly used Abadi-
Rogaway logic of symbolic messages introducing a probabilistic hash operator
hr(m) in the logic, next to the probabilistic symmetric encryption operator
{|m|}rk. Just as the original logic introduces a 2-operator to put in place of
undecryptable ciphertext (for us 2

r, since we also deal with repetitions of
ciphertexts), we introduce a ⊠

r-operator to put in place of the hash of an
unknown message. In the computational world, we interpret h as a perfectly
one-way function H. We prove that if the encryption algorithm E is type-0
secure, the resulting interpretation is sound, extending the result from [AR02].
The same result holds if E is IND-CPA. This result previously appeared, in
abbreviated form, as [GvR06]. Furthermore, assuming that the encryption
scheme is confusion-free, we prove that the interpretation is complete as well,
extending the result from [MW04a].

For these results, the adversaries under consideration are passive: they
do not try to actively modify messages or insert messages into the network.
We show that although an oracle hash scheme allows us to port security re-
sults from the Dolev-Yao setting to the computational setting with respect to
passive adversaries, it does not do so with respect to active adversaries. The
reason is the same as for type-0 or IND-CPA encryption schemes: in such an
encryption scheme it might be possible for an attacker to modify an encryption
E(κ, µ) of µ to the encryption E(κ, f(µ)) of another message that has some
relation to µ; similarly, in an oracle hash scheme it might be possible for an
attacker to modify the hash of an unknown message µ to the hash of another
unknown message that has some relation to µ. Concretely, we construct an
explicit oracle hash scheme in which an adversary can create the hash value
H(µ′µ) given only H(µ) and µ′. We stress that passive adversaries are the best
that one can hope for as the standard security definitions for hash functions
or even hash schemes are not resilient against active adversaries.

Overview. Section 2 introduces the message algebra, including the proba-
bilistic encryption and probabilistic hash operators. It also defines the obser-
vational equivalence relation on messages. Section 3 then introduces the com-
putational world, giving the security definitions for encryption and hashes.
In Section 4 the semantic interpretation [[−]] is defined and Section 5 proves
the soundness of this interpretation and Section 6 completeness. Section 7 dis-
cusses the limitation to passive adversaries. Finally, Section 8 discusses further
research directions.

3

2 The Symbolic Setting

This section describes the message space and the observational equivalence
extending the well-known Abadi-Rogaway logic [AR02] of symbolic messages
with hashes. These messages are used to describe cryptographic protocols
and the observational equivalence tells whether or not two protocol runs are
indistinguishable for a global eavesdropper. Here a protocol run is simply the
concatenation of all the messages exchanged in the run.

Definition 2.1 Key is an infinite set of key symbols, Nonce an infinite set of
nonce symbols, Const a finite set of constant symbols including 0 and 1, and
Random an infinite set of randomness labels. Keys are denoted by k, k′, . . . ,
nonces by n, n′, . . . , constants by c, c′, . . . , and randomness labels by r, r′,
There is one special key called k2 and for every randomness label r there is a
special nonce called nr

⊠
. Using these building blocks, messages are constructed

using symbolic encryption, hashing, and pairing operations:

Msg ∋ m := c | k | n | {|m|}rk | h
r(m) | 〈m,m〉 | 2r | ⊠r .

Here k and n do not range over all keys/nonces, but only over the non-special
ones. Special symbols (2

r and ⊠
r) are used to indicate undecryptable ci-

phertexts or hash values of unknown messages. When interpreting messages
as (ensembles of distributions over) bitstrings, we will treat 2

r as if it were
{|0|}rk2 and ⊠

r as if it were hr(nr
⊠
).

A message of the form {|m|}rk is called an encryption and the set of all
such messages is denoted by Enc. Similarly, messages of the form hr(m) are
called hash values and the set of all these messages is denoted by Hash. Fi-
nally Box denotes the set of all messages of the form 2

r or ⊠
r. The set

of all messages that involve a “random choice” at their “top level”, i.e.,
Key∪Nonce∪Enc∪Hash∪Box, is denoted by RndMsg. The randomness
labels model the fact that our computational encryption scheme is probabilis-
tic: 〈{|m|}rk, {|m|}

r
k〉 models a repetition (forwarding) of the same ciphertext,

whereas 〈{|m|}rk, {|m|}
r′

k 〉 models a re-encryption with the same key. Note that
our computational hash scheme, oracle hashing, is also probabilistic; hence,
also the symbolic hash function is equipped with randomness labels.

The closure of a set U of messages is the set of all messages that can be
constructed from U using tupling, detupling, and decryption. It represents the
useful information an adversary could deduce knowing U . Note that, due to
one-wayness of a hash function, knowing hr(m) does not provide an adversary
with any information about m. Similarly, and modeling the randomization of
the encryption and hash schemes, building new encryptions or hash values
does not give any useful information to the adversary. We also remark that
pairs are useful to the adversary for checking if the argument m of a certain
hash value hr(m) can be constructed from other messages he already knows.

4

In contrast, freshly generated keys, nonces, (randomized) encryptions or (ran-
domized) hash values are of no use to the adversary as they will not appear
in m.

Definition 2.2 (Closure) Let U be a set of messages. The closure of U ,
denoted by U , is the smallest set of messages satisfying:

(1) Const ⊆ U ;
(2) U ⊆ U ;
(3) m,m′ ∈ U =⇒ 〈m,m′〉 ∈ U ;
(4) {|m|}rk, k ∈ U =⇒ m ∈ U ;
(5) 〈m,m′〉 ∈ U =⇒ m,m′ ∈ U .
For the singleton set {m}, we write m instead of {m}.

The function pattern : Msg →Msg is a straightforward extension of the
same function in Abadi-Rogaway [AR02] which takes a messagem and reduces
it to a pattern. Intuitively, pattern(m) is the pattern that an attacker sees in
a message m and messages with the same pattern (up to renaming) look
the same to her. Encryptions with keys the attacker cannot learn (i.e., not
in m) are replaced by 2 and hash values of unknown messages by ⊠. Since
we allow repetition of ciphertexts and hash values, we have to distinguish
between unknown, but equal, ciphertexts 〈2r,2r〉 and unknown, but distinct,
ciphertexts 〈2r,2r′〉 and likewise for hashes.

Definition 2.3 The function pattern : Msg →Msg is defined by

pattern(m) = pattern(m,m)

where we overload pattern by defining pattern : Msg × P(Msg)→Msg as

pattern(〈m1, m2〉, U) = 〈pattern(m1, U), pattern(m2, U)〉

pattern({|m|}rk, U) =

{

{|pattern(m,U)|}rk, if k ∈ U ;

2
R({|m|}r

k
), otherwise.

pattern(hr(m), U) =

{

hr(pattern(m,U)), if m ∈ U ;

⊠
R(hr(m)), otherwise.

pattern(m,U) = m in any other case.

Here R : Enc ∪ Hash →֒ Random is an injective function that takes an
encryption or a hash value and outputs a tag that identifies its randomness.

The tagging function R is needed to make sure that the function pattern
is injective: distinct undecryptable messages should be replaced by distinct
boxes and similarly for hashes. Note that instead of using R one could also
tacitly assume that randomness labels r used in distinct contexts, such as
{|m|}rk and {|m′|}r

′

k with m 6= m′, are always distinct.

5

Example 2.4 Consider the message

m = 〈{|{|1|}r
′

k′, h
r̃(n)|}rk, h

r̂(k), k〉.

pattern(m) = 〈{| 2s , ⊠
t |}rk, h

r̂(k), k〉, because k′, n are not in m,Then

where t = R(hr̃(n)) and s = R({|1|}r
′

k′).

Definition 2.5 (Renaming) Two messages m and m′ are said to be equiva-
lent up to renaming, notationm ≈ m′, if there is a type preserving permutation
σ of Key ∪Nonce ∪Box ∪Random such that m = m′σ. Here m′σ denotes
simultaneous substitution of x by σ(x) in m′, for all x ∈ Key ∪ Nonce ∪
Box ∪Random.

Definition 2.6 (Observational equivalence) Two messages m and m′ are
said to be observationally equivalent, denoted by m ∼= m′, if pattern(m) ≈
pattern(m′).

In the computational world, security definitions for encryption schemes do
not guarantee security when encryption cycles occur. In the symbolic world,
however, this poses no problem. Therefore, as in the original setting in [AR02],
for the mapping from the symbolic world to the computational world to be
sound, we have to forbid encryption cycles in the symbolic world.

Definition 2.7 (Sub-message) Define the relation sub-message, notation
�, as the smallest reflexive and transitive relation on Msg satisfying

(1) m1 � 〈m1, m2〉
(2) m2 � 〈m1, m2〉
(3) m � {|m|}rk
(4) m � hr(m) .

Definition 2.8 (Acyclicity) Let m be a message and k, k′ two keys. The
key k is said to encrypt k′ in m if m has a sub-message of the form {|m′|}rk
with k′ being a sub-message of m′. A message is said to be acyclic if there is
no sequence k1, k2, . . . , kn, kn+1 = k1 of keys such that ki encrypts ki+1 in m
for all i ∈ {1, . . . , n}.

3 The Computational Setting

This section gives a brief overview of some of the concepts used in the
complexity theoretic approach to security protocols. Much of this is standard;
the reader is referred to [GB01,BDJR97] for a thorough treatment of the basic
concepts, to [AR02] for the notion of type-0 security for cryptographic schemes
(see Section 3.2 below), and to [Can97a] for the notion of oracle hashing (see
Section 3.3 below).

6

In the computational world, messages are elements of Str := {0, 1}∗. Cryp-
tographic algorithms and adversaries are probabilistic polynomial-time algo-
rithms. When analyzing cryptographic primitives, it is customary to consider
probabilistic algorithms that take an element in Param := {1}∗ as input,
whose length scales with the security parameter. By making the security pa-
rameter large enough, the system should become arbitrarily hard to break.

This idea is formalized in the security notions of the cryptographic opera-
tions. The basic one, which is what is used to define the notion of semantically
equivalent messages, is that of computational indistinguishability of probabil-
ity ensembles over Str. Here a probability ensemble over Str is a sequence
{Aη}η∈N of probability distributions over Str indexed by the security param-
eter.

Definition 3.1 (Computational indistinguishability) Two probability en-
sembles {Xη}η∈N and {Yη}η∈N are said to be computationally indistinguishable,
notation {Xη}η ≡ {Yη}η, if for every probabilistic polynomial-time algorithm
D,

P[x← Xη;D(1η, x) = 1]− P[x← Yη;D(1η, x) = 1]

is a negligible function of η.

Recall that a function f : N→ N is called negligible if for all positive poly-
nomials p, f(η) ≤ 1/p(η) for large enough η (i.e., if for all positive polynomials
p, there exists an η0 ∈ N such that for all η ∈ N with η > η0, f(η) ≤ 1/p(η)).

After a brief interlude on probabilistic polynomial-time algorithms in Sec-
tion 3.1, we give the formal definition of an encryption scheme and its security
notion in Section 3.2 and of oracle hashing in Section 3.3.

3.1 Probabilistic Algorithms

In Definition 3.1, the notion of probabilistic polynomial-time algorithm
was already used. Because we explicitly use two different views of these algo-
rithms and in order to fix notation, we give a more precise definition.

Definition 3.2 Coins is the set {0, 1}ω, the set of all infinite sequences of
0’s and 1’s. We equip Coins with the probability distribution obtained by
flipping a fair coin for each element in the sequence. To be precise, Coins =
〈{0, 1}ω,F ,P〉. Here F is the σ-field on {0, 1}ω generated by the cones {αβ |
β ∈ {0, 1}ω}, α ∈ {0, 1}∗ and P : F → [0, 1] is the unique measure given on
the cones by P({αβ | β ∈ {0, 1}ω}) = 2−|α|.

Definition 3.3 The result of running a probabilistic algorithm A on an input
x ∈ Str is a probability distribution A(x) over Str. When we need to explicitly
write the randomness used while running A, we write A(x, ρ) with ρ ∈ Coins.
Using this notation, P[A(x) = y] = P[ρ← Coins;A(x, ρ) = y]. When confusion
is unlikely, we will also denote the support of this probability distribution,
{y ∈ Str|P[ρ← Coins;A(x, ρ) = y)] > 0}, by A(x).

7

Now suppose that A runs in polynomial time p. Then running A on x
cannot use more than p(|x|) coin flips. Letting Coinsp(|x|) denote the uniform
probability distribution on {0, 1}p(|x|), we can also write P[A(x) = y] = P[ρ←
Coinsp(|x|);A(x, ρ) = y].

3.2 Encryption Scheme

For each security parameter η ∈ N we let Plaintextη ⊆ Str be a
non-empty set of plaintexts, satisfying that for each η ∈ N : Plaintextη ⊆
Plaintextη+1 as in Goldwasser and Bellare [GB01]. Let us define Plaintext =
⋃

η Plaintextη.There is a setKeys ⊆ Str of keys and also a setCiphertext ⊆
Str of ciphertexts. Furthermore, there is a special bitstring ⊥ not appearing
in Plaintext or Ciphertext. An encryption scheme Π consists of three algo-
rithms:

(1) a (probabilistic) key generation algorithm K : Param→ Keys that out-
puts, given a unary sequence of length η, a randomly chosen element of
Keys;

(2) a (probabilistic) encryption algorithm E : Keys× Str → Ciphertext ∪
{⊥} that returns, given a key and a bitstring, an element fromCiphertext
or ⊥;

(3) a (deterministic) decryption algorithm D : Keys × Str → Plaintext ∪
{⊥} that returns, given a key and a ciphertext, an element fromPlaintext
or ⊥.

These algorithms must satisfy that the decryption (with the correct key) of
a ciphertext returns the original plaintext. The element ⊥ is used to indicate
failure of en- or decryption, although, before hand, there is no requirement that
decrypting with the wrong keys yields ⊥. Now we define type-0 security of an
encryption scheme as in [AR02], which is a variant of the standard semantic
security definition, enhanced with some extra properties. In particular a type-
0 secure encryption scheme is which-key concealing, repetition concealing and
length hiding. We refer to the original paper for motivation and explanations
on how to achieve such an encryption scheme. The notion of type-0 security
makes slightly unrealistic assumptions on the encryption scheme. However our
result on hashes does not significantly depend on the specific security notion
for the encryption scheme. As in [MP05,Her05,Ban04], it is possible to replace
type-0 security by the standard notion of IND-CPA or IND-CCA by adapting
the definition of pattern. For simplicity of the exposition, throughout this
paper we adopt the former security notion.

Definition 3.4 An adversary (for type-0 security) is a probabilistic polyno-
mial-time algorithm AF(−),G(−) : Param → {0, 1} having access to two prob-
abilistic oracles F ,G : Str → Str. The advantage of such an adversary is the

8

function AdvA : N→ R defined by

AdvA(η) = P[κ, κ
′ ← K(1η);AE(κ,−),E(κ′,−)(1η) = 1]−

P[κ← K(1η);AE(κ,0),E(κ,0)(1η) = 1].

Here the probabilities are taken over the choice of κ and κ′ by the key gen-
eration algorithm, over the internal coins used by the oracles, and over the
internal choices of A. An encryption scheme 〈K, E ,D〉 is called type-0 secure
if for all polynomial-time adversaries A as above, the advantage AdvA is a
negligible function of η. enough η, AdvA(η) ≤

1
p(η)

.

In the sequel we need an extra assumption on the encryption scheme,
namely that the ciphertexts are well-spread as a function of the coins tosses
of E . It means that for all plaintexts µ and all keys κ, no ciphertext is excep-
tionally likely to occur as the encryption of µ under κ. Note that this does
not follow from, nor implies type-0 security. Also note that every encryption
scheme running in cipher block chaining mode automatically has this property:
the initial vector provides the required randomness.

Definition 3.5 (Well-spread) An encryption scheme 〈K, E ,D〉 is said to be
well-spread if

sup
x∈Ciphertext,κ∈K(1η),µ∈Plaintextη

P[E(κ, µ) = x]

is a negligible function of η.

For completeness it is needed that the decryption algorithm returns reject
whenever it is called with a key that was not used to encrypt the message in the
first place. The special bitstring ⊥ is used to indicate failure of decryption. This
property is called confusion freeness. See [MW04a], where the completeness
for the original Abadi-Rogaway logic is proven.

Definition 3.6 (Confusion freeness) Let Π = 〈K, E ,D〉 be an encryption
scheme indexed by the security parameter η. Π is said to be confusion free if
for all bitstrings µ the probability

P[κ1, κ2 ← K(η) : Dκ1 (Eκ2(µ)) 6= ⊥]

is a negligible function of η.

3.3 Oracle Hashing

The underlying secrecy assumptions behind formal or Dolev-Yao hashes
[DY83] are very strong. It is assumed that given a hash value f(x), it is
not possible for an adversary to learn any information about the pre-image
x. In the literature this idealization is often modeled with the random or-
acle [BR93]. Such a primitive is not computable and therefore it is also an

9

idealization. Practical hash functions like SHA or MD5 are very useful cryp-
tographic primitives but have no proven security guaranties. Moreover, under
the traditional security notions (one-wayness), a function that reveals half of
its input might still be secure. In addition, any deterministic hash function
f leaks partial information about x, namely f(x) itself. Throughout this pa-
per we consider a new primitive introduced by Canetti [Can97a] called oracle
hashing, that mimics what semantic security is for encryption schemes. This
hash function is probabilistic and therefore it needs a verification function,
just as in a signature scheme. A hash scheme consists of two algorithms H
and V. The probabilistic algorithm H : Param × Str → Str takes a unary
sequence and a message and outputs a hash value; the verification algorithm
V : Str × Str → {0, 1} that given two messages x and c correctly decides
whether c is a hash of x or not. As an example we reproduce here a hash
scheme proposed in the original paper. Let p be a large (i.e., scaling with
η) safe prime (i.e., a prime of the form 2q + 1 where q is also prime). Take
H(x) = 〈r2 mod p, r2·f(x) mod p〉, where r is a randomly chosen element in
Z∗
p and f is any collision resistant hash function. The verification algorithm

V(x, 〈a, b〉) just checks whether b = af(x) mod p.
We consider two security notions for such a hash scheme. The first one,

proposed by Canetti [Can97a] and later revisited in [CMR98], oracle indis-
tinguishability, guarantees that an adversary can gain no information at all
about a bitstring, given its hash value (or rather, with sufficiently small prob-
ability). The second one, more standard, is an appropriate form of collision
resistance. It guarantees that an adversary cannot (or rather, again, with suf-
ficiently small probability) compute two distinct messages that successfully
pass the verification test with the same hash value.

Definition 3.7 (Oracle indistinguishability) Ahash scheme 〈H,V〉 is said
to be oracle indistinguishable if for every family of probabilistic polynomial-
time predicates {Dη : Str→ {0, 1}}η∈N and every positive polynomial p there
is a polynomial size family {Lη}η∈N of subsets of Str such that for all large
enough η and all x, y ∈ Str \ Lη:

P[Dη(H(1
η, x)) = 1]− P[Dη(H(1

η, y)) = 1] <
1

p(η)
.

Here the probabilities are taken over the choices made by H and the choices
made by Dη. This definition is the non-uniform [Gol01] version of oracle in-
distinguishability proposed by Canetti [Can97a] as it is used in the proofs in
Appendix B of the full version [Can97b].

Definition 3.8 (Collision resistance) A hash scheme 〈H,V〉 is said to be
collision resistant if for every probabilistic polynomial-time adversary A, the
probability

P[〈c, x, y〉 ← A(1η); x 6= y ∧ V(x, c) = V(y, c) = 1]

10

is a negligible function of η.

4 Interpretation

Section 2 describes a setting where messages are symbolic terms gener-
ated by some grammar. In Section 3 messages are bitstrings and operations
are given by probabilistic algorithms operating on bitstrings. This section
shows how to map symbolic messages to (distributions over) bitstrings. This
interpretation is very much standard. We refer to [AR02,AJ01,MW04a] for
a thorough explanation. In particular this section introduces notation that
allows us to assign, beforehand, some of the random coin flips used for the
computation of the interpretation of a message. This notation becomes useful
throughout the soundness proof.

Tagged representation. Throughout this paper we assume that it is al-
ways possible to recover the type information of a message from its bitstring
representation. This can be easily achieved by adding the necessary type tags
to the bitstring representation. We will abstract from this representation by
overloading the notation. We use Greek letters for bitstrings and µ represents
a bitstring of a generic type. We write µ1µ2 for a pair of bitstrings (in [AR02]
this would be written as 〈(µ1, µ2), “pair”〉); ǫ for a ciphertext; κ for a key; ψ
for a hash value; ν for a nonce and ς for a constant.

Definition 4.1 For every message m we define the set R(m) ⊆Msg of ran-
dom messages in m as follows:

R(c) = ∅ R({|m|}rk) = R(m) ∪ {k, {|m|}rk}

R(n) = {n} R(hr(m)) = R(m) ∪ {hr(m)}

R(k) = {k} R(〈m1, m2〉) = R(m1) ∪ R(m2)

R(2r) = {k2,2
r} R(⊠r) = {nr

⊠
,⊠r}.

Note that R(m) is nearly equal to the set of all sub-messages of m that
are in RndMsg; the only difference is that R(m) also may contain the special
key k2 or special nonces nr

⊠
. When interpreting a message m as (ensembles

of distributions over) bitstrings (Definition 4.3 below), we will first choose a
sequence of coin flips for all elements of R(m) and use these sequences as
source of randomness for the appropriate interpretation algorithms.

Definition 4.2 For every finite subset X of RndMsg we define Coins(X) as
{τ | τ : X → Coins}. We equip Coins(X) with the induced product probability
distribution. Furthermore, for every message m we write Coins(m) instead of
Coins(R(m)).

11

An element of τ of Coins(m) gives, for every sub-message m′ of m that
requires random choices when interpreting this sub-message as a bitstring, an
infinite sequence τ(m′) of coin flips that will be used to resolve the randomness.

Now we are ready to give semantic to our message algebra. We use E to
interpret encryptions, K to interpret key symbols, and H to interpret hashes.
We let C : Const→ Str be a function that (deterministically) assigns a con-
stant bit string to each constant identifier. We let N : Param → Str be the
nonce generation function that, given a unary sequence of length η, chooses
uniformly and randomly a bitstring from {0, 1}η.

Definition 4.3 For a message m, a value of the security parameter η ∈ N,
a finite set U of messages containing R(m), and a τ ∈ Coins(U), we can
(deterministically) create a bitstring [[m]]τη ∈ Str as follows:

[[c]]τη = C(c) [[{|m|}rk]]
τ

η = E([[k]]
τ

η, [[m]]τη , τ({|m|}
r
k))

[[k]]τη = K(1
η, τ(k)) [[hr(m)]]τη = H(1

η, [[m]]τη , τ(h
r(m)))

[[n]]τη = N (1η, τ(n)) [[2r]]τη = E([[k2]]
τ
η, C(0), τ(2

r))

[[〈m1, m2〉]]
τ
η = [[m1]]

τ
η [[m2]]

τ
η [[⊠r]]τη = H(1

η, [[nr
⊠
]]τη, τ(⊠

r)).

Note that [[m]]τη = [[m]]τ |R(m)

η . For a fixed message m and η ∈ N, choosing τ from
the probability distribution Coins(R(m)) creates a probability distribution
[[m]]η over Str:

[[m]]η := [τ ← Coins(m); [[m]]τη].

Note that although the codomain of τ ∈ Coins(m) is Coins, the set of
infinite bitstrings, when interpreting a fixed message m at a fixed value of
the security parameter η, only a predetermined finite initial segment of each
sequence of coin flips will be used by K, N , E , and H (cf. Definition 3.3). In
fact, because these four algorithms run in polynomial time, for every message
m there exists a polynomial pm such that every call to one of these four
algorithms uses at most the first pm(η) elements of τ . Now define Coinsη(m) =
{τ | τ : R(m) → {0, 1}pm(η)} and equip this with the uniform probability
distribution. Then we can also write when

[[m]]η = [τ ← Coinsη(m); [[m]]τη].

Furthermore, letting η range over N creates an ensemble of probability distri-
butions [[m]] over Str, namely [[m]] := {[[m]]η}η∈N.

4.1 Partial interpretation

For technical reasons throughout the soundness proof, we need to compute
the interpretation of a symbolic message while part of its randomness has
already been chosen. This section introduces straightforward notation to do
so.

12

Definition 4.4 For every message m and m′ we define the set R(m,m′) ⊆
RndMsg of random messages in m relative to m′ as follows:
if m = m′, then R(m,m′) = ∅, otherwise

R(c,m′) = ∅ R({|m|}rk, m
′) = R(m,m′) ∪ {k, {|m|}rk}

R(n,m′) = {n} R(hr(m), m′) = R(m,m′) ∪ {hr(m)}

R(k,m′) = {k} R(〈m1, m2〉, m
′) = R(m1, m

′) ∪ R(m2, m
′)

R(2r, m′) = {k2,2
r} R(⊠r, m′) = {nr

⊠
,⊠r}.

Note that R(m,m′) is the set of all random messages in m except those
that only occur as a sub-message of m′.

Example 4.5 Let m be the message 〈k, {|0|}rk, h
r′({|0|}rk, n), n

′〉 and let m̃ be
the message inside the hash: 〈{|0|}rk, n〉. Then the randomness in m is R(m) =
{k, {|0|}rk, h

r′({|0|}rk, n), n
′, n}, the randomness inside the hash is R(m̃) = {{|0|}rk,

k, n}, and the randomness that occurs only outside the hash is R(m, hr
′

(m̃)) =
R(m) \ {hr

′

(m̃), n}. The randomness that is shared between the inside of the
hash and the outside of the hash is R(m, hr

′

(m̃)) ∩ R(m̃) = {k, {|0|}rk}.

We will need a way of interpreting a message as a bitstring when the
interpretation of certain sub-messages has already been chosen in some other
way.

Definition 4.6 Let η ∈ N, let e be a function from Dom(e) ⊆ Msg to Str
and let τ ∈ Coinsη(U \ Dom(e)) with U a finite set of messages containing
R(m). We interpret a message m using e whenever possible. Otherwise, we
use the coin flips assigned by τ to generate an interpretation. If m ∈ Dom(e),
then [[m]]e,τη = e(m), else

[[c]]e,τη = C(c) [[{|m|}rk]]
e,τ
η = E([[k]]τη, [[m]]e,τη , τ({|m|}rk))

[[k]]e,τη = K(1η, τ(k)) [[hr(m)]]e,τη = H(1η, [[m]]e,τη , τ(hr(m)))

[[n]]e,τη = N (1η, τ(n)) [[2r]]e,τη = E([[k2]]
e,τ

η , C(0), τ(2r))

[[〈m1, m2〉]]
e,τ

η = [[m1]]
e,τ

η [[m2]]
e,τ

η [[⊠r]]e,τη = H(1η, [[nr
⊠
]]e,τη , τ(⊠r)).

We also need a way of pre-specifying some of the random choices to be
made when interpreting a message.

Definition 4.7 Let η ∈ N and let τ ∈ Coinsη(U) for some finite set of mes-
sages U . Then for every message m, the distribution [[m]]τη is obtained by
randomly choosing coins for the remaining randomness labels in m. Formally,

[[m]]τη := [τ ′ ← Coinsη(R(m) \ U); [[m]]τ∪τ
′

η],

where τ∪τ ′ ∈ Coinsη(m) denotes the function which agrees with τ on U∩R(m)
and with τ ′ on R(m) \ U .

13

This can also be combined with the previous way of preselecting a part
of the interpretation. For a function e from a set Dom(e) ⊆Msg to Str and
τ ∈ Coinsη(U) as above, we define

[[m]]e,τη := [τ ′ ← Coinsη(R(m) \ U); [[m]]e,τ∪τ
′

η].

5 Soundness

This section shows that the interpretation proposed in the previous sec-
tion is computationally sound. Throughout this section we assume that the
encryption scheme 〈K, E ,D〉 is type-0 secure (or IND-CCA with pattern mod-
ified as in [Her05,MP05]) and well-spread, and that the probabilistic hash
scheme 〈H,V〉 is oracle indistinguishable and collision resistant.

In order to isolate our contribution, we split the function pattern in two
parts: one replacing the encryptions and one replacing the hashes. We define
the function encpat as in Abadi-Rogaway [AR02] which takes a message m
and reduces it to a pattern. This function does not replace hashes.

Definition 5.1 The function encpat : Msg→Msg is defined as follows

encpat(m) = encpat(m,m)

where encpat : Msg × P(Msg)→Msg is defined by

encpat(〈m1, m2〉, U) = 〈encpat(m1, U), encpat(m2, U)〉

encpat({|m|}rk, U) =

{

{|encpat(m,U)|}rk, if k ∈ U ;

2
R({|m|}r

k
), otherwise.

encpat(hr(m), U) = hr(encpat(m,U))

encpat(m,U) = m in any other case.

Now we define the function hashpat which takes a message m and reduces
all hashes of unknown (not in m) sub-messages, to ⊠. This function does not
replace encryptions.

Definition 5.2 Define the function hashpat : Msg →Msg as

hashpat(m) = hashpat(m,m)

where hashpat : Msg ×P(Msg)→Msg is defined by

hashpat(〈m1, m2〉, U) = 〈hashpat(m1, U), hashpat(m2, U)〉

hashpat({|m|}rk, U) = {|hashpat(m,U)|}
r
k

hashpat(hr(m), U) =

{

hr(hashpat(m,U)), if m ∈ U ;

⊠
R(hr(m)), otherwise.

hashpat(m,U) = m in any other case.

14

Lemma 5.3 pattern ≈ encpat ◦ hashpat.

Proof. A straightforward induction on m shows that m = hashpat(m). Us-
ing this, another straightforward induction on m shows that pattern(m) ≈
encpat(hashpat(m)). 2

Theorem 5.4 (Abadi-Rogaway) Let m be an acyclic message. Suppose
that for every sub-message hr(m̃) of m, m̃ ∈ m.Then [[m]] ≡ [[encpat(m)]].

Proof. The proof follows just like in Abadi-Rogaway [AR02]. Interpreting
hashes here is straightforward because their argument is always known, by
assumption. We refer the reader to the original paper for a full proof. 2

Before starting the proof of the soundness theorem, we give a sketch for
an easy case and point out where the technical problems in the general case
are. Consider two messages h(n, 0)n′ and h(n, 1)n′. These are observationally
equivalent and we have to prove that [[h(n, 0), n′]] and [[h(n, 1), n′]] are com-
putationally indistinguishable. The way to prove this is standard: we assume
that there exists a probabilistic polynomial-time adversary A that can dis-
tinguish these two ensembles of probability distribution and use it to build
an adversary D that break the oracle indistinguishability of the hash scheme
〈H,V〉. What D has to do is clear: it receives a hash value α which is either
H(1η, ν0) or H(1η, ν1), and has to guess which one it is. It generates a nonce
ν ′ and calls A on αν ′. Since A can successfully distinguish H(1η, ν0)ν ′ from
H(1η, ν1)ν ′, this enables D to break oracle indistinguishability.

A problem occurs in the case of the messages h(n, n′)n′ and h(n, 1)n′.
Receiving a hash value α which is either H(1η, νν ′) orH(1η, ν1), D cannot just
generate a nonce ν ′′ and call A on αν ′′: the distribution of H(1η, νν ′)ν ′ is not
equal to that ofH(1η, νν ′)ν ′′. The technical solution is to provide the adversary
D with access to ν ′; this is enough to prove that oracle indistinguishability
can then be broken. What is still needed is that the inside of the hash is still
“random enough” even if part of it is revealed; in this particular case this
means that revealing ν ′, the inside of that hash is still hidden to D.

We now first prove, in general, that it is safe to reveal some of the ran-
domness inside the hash. More accurately, if you pre-specify some, but not all,
of the sequences of coins to be chosen when interpreting a message m, then
no single bitstring x is exceptionally likely to occur as the interpretation of
m. After this lemma, we can prove the soundness result.

Lemma 5.5 Let m be a message, U R(m). Let p be a positive polynomial.
Then, for large enough η

∀τ ∈ Coinsη(U).∀x ∈ Str : P[α← [[m]]τη ;α = x] <
1

p(η)
.

Proof. The proof follows by induction on the structure of m.

15

• Consider the case m = 〈m1, m2〉. We get by induction hypothesis that the
statement holds either for m1 or m2, which suffices for the proof given
that concatenating a bitstring might just lower the probability of hitting a
particular element.
• The cases m = {|m1|}

r
k and m = 2

r are trivial due to well-spreadness
(Definition 3.5).
• The cases ⊠

r and m = hr(m1) follow from collision resistance (Defini-
tion 3.8).
• The case m = c does not occur since U must be a proper subset of R(c) = ∅.
• Ifm is a nonce n, then U = ∅ since it must be a proper subset of R(n) = {n}.
Then P[α← [[n]]τη;α = x] = 1

2η
< 1

p(η)
.

• If m is a key k, then again U = ∅. Suppose that for infinitely many η there
is a τ ∈ Coinsη(U) and an x ∈ Str for which

P[α← [[k]]τη;α = x] = P[α← K(1η);α = x] ≥
1

p(η)
. (1)

Now we build an adversary AF(−),G(−) : Param→ {0, 1} that breaks type-0
security.

algorithm AF(−),G(−)(1η) :

ν ← N (1η)

ǫ← F(ν)

κ← K(1η)

if D(κ, ǫ) = ν return 1

else return 0

This adversary generates a random nonce ν and gives it to the oracle F
to encrypt. The adversary tries to guess if the oracle was instantiated with
E(k,−) or with E(k, 0) by simply randomly generating a key itself and
trying to decrypt. We will show that the probability that the oracle and the
adversary choose the same key is non-negligible and hence the probability
that this adversary guesses correctly is also non-negligible. Omitting G as
it is not used by A, we get

AdvA(η)

= P[κ← K(1η); ν ← N (1η); ǫ← E(κ, ν); κ′ ← K(1η);D(κ′, ǫ) = ν]

− P[κ← K(1η); ν ← N (1η); ǫ← E(κ, 0); κ′ ← K(1η);D(κ′, ǫ) = ν]

≥ P[κ, κ′ ← K(1η); κ = κ′]

−
∑

y∈{0,1}η

P[ν ← N (1η); y = ν]

· P[κ, κ′ ← K(1η); ǫ← E(κ, 0);D(κ′, ǫ) = y]

(because it is always possible to decrypt with the proper key)

≥
1

p(η)2
− 2−η

∑

y∈{0,1}η

P[κ, κ′ ← K(1η); ǫ← E(κ, 0);D(κ′, ǫ) = y]

16

(bounding the first term by the probability of getting x two times)

≥
1

p(η)2
− 2−η

∑

κ0,κ
′

0,ǫ0

(

P[κ, κ′ ← K(1η); κ = κ0; κ
′ = κ′0; E(κ, 0) = ǫ0]

·
∑

y∈{0,1}η

P[D(κ′0, ǫ0) = y]

)

≥
1

p(η)2
− 2−η ≥

1

p(η)3
(for large enough η). 2

Theorem 5.6 Let m be a message with a sub-message of the form hr(m̃).
Assume that m̃ 6∈ m. Take m′ := m[hr(m̃) := ⊠

s], where s = R(hr(m̃)). Then
[[m]] ≡ [[m′]].

Proof. Assume that [[m]] 6≡ [[m′]], say A : Param × Str → {0, 1} is a proba-
bilistic polynomial-time adversary and p a positive polynomial such that

1

p(η)
≤ P[µ← [[m]]η;A(1

η, µ) = 1]− P[µ← [[m′]]η;A(1
η, µ) = 1] (2)

for infinitely many η ∈ N. We will use this to build a distinguisher as in
Definition 3.7 that breaks oracle indistinguishability of 〈H,V〉. 2

Let η ∈ N, abbreviate R(m, m̃) ∩ R(m̃) to U and let τ ∈ Coinsη(U). Note
that τ chooses coin flips for the shared randomness between the inside and
the outside of the hash. Then define a probabilistic polynomial-time algorithm
Dτ
η : {0, 1}

∗ → {0, 1} as follows.

algorithm Dτ
η(α) :

µ← [[m]]{h
r(m̃) 7→α},τ

η

β ← A(η, µ)

return β

This algorithm tries to guess if a given bitstring α was drawn from [[hr(m̃)]]τη
or from [[⊠s]]τη = [[hs(ns

⊠
)]]τη. It does so by computing an interpretation for m

as follows. The sub-message hr(m̃) is interpreted as α; the randomness that
is shared between the inside of the hash (m̃) and the rest of the message is
resolved using hard-coded sequences of coin flips τ . It then uses the adversary
A to guess if the resulting interpretation was drawn from [[m]]η (in which case
it guesses that α was drawn from [[hr(m̃)]]η) or from [[m′]]η (in which case it
guesses that α was drawn from [[⊠s]]η).

Note that for every η and τ we have a different algorithm Dτ
η that has

hardcoded coin flips for the shared randomness. However we do not have a
single algorithm taking η and α as arguments since such an algorithm would
need an infinite sequence of hardcoded coin flips.

Now consider one of the infinitely many values of η for which (2) holds.

17

Using Dτ
η we can rephrase (2) as follows:

1

p(η)
≤ P[τ ← Coinsη(U), α← [[hr(m̃)]]τη;D

τ
η(α) = 1]−

P[τ ← Coinsη(U), α← [[⊠s]]τη;D
τ
η(α) = 1]

=
∑

τ∈Coinsη(U)

(

P[α← [[hr(m̃)]]τη;D
τ
η(α) = 1]−

P[α← [[⊠s]]τη ;D
τ
η(α) = 1]

)

· P[T ← Coinsη(U);T = τ]

=
∑

τ∈Coinsη(U)

(

P[α← [[m̃]]τη;D
τ
η(H(1

η, α)) = 1]−

P[α← [[ns
⊠
]]τη;D

τ
η(H(1

η, α)) = 1]
)

· P[T ← Coinsη(U);T = τ]

=
1

|Coinsη(U)|

∑

τ∈Coinsη(U)

(

P[α← [[m̃]]τη;D
τ
η(H(1

η, α)) = 1]−

P[α← [[ns
⊠
]]τη;D

τ
η(H(1

η, α)) = 1]
)

.

Note that τ selects the randomness that is shared between the inside of the
hash and the outside of the hash; when α is drawn from [[m̃]]τη the randomness

that appears only inside the hash is chosen (and the assumption on m̃ means
that there is really something to choose); H chooses the randomness for taking
the hash; and Dτ

η itself resolves the randomness that appears only outside the
hash. This means that there must be a particular value of τ , say τ̄η, such that

1

p(η)
≤ P[α← [[m̃]]τ̄ηη ;D

τ̄η
η (H(1η , α)) = 1]− P[α← [[ns⊠]]

τ̄η
η ;D

τ̄η
η (H(1η , α)) = 1]. (3)

Gathering all Dτ̄η
η together for the various values of η, let D be the non-

uniform adversary {Dτ̄η
η }η∈N. Note that we have not actually defined Dτ̄η

η for
all η, but only for those (infinitely many) for which (2) actually holds. What
D does for the other values of η is irrelevant.

We will now show that D breaks the oracle indistinguishability of 〈H,V〉.
For this, let L = {Lη}η∈N be a polynomial size family of subsets of Str. We
have to show that for infinitely many values of η, there are x, y ∈ Str \ Lη
such that D meaningfully distinguishes between H(1η, x) and H(1η, y).

Once again, take one of the infinitely many values of η for which (2) holds.
Continuing from (3), we get

1

p(η)
≤

∑

α∈[[m̃]]
τ̄η
η

P[D
τ̄η
η (H(1η , α)) = 1] · P[[[m̃]]τ̄ηη = α]

−
∑

β∈[[ns
⊠
]]τ̄η
η

P[D
τ̄η
η (H(1η , β)) = 1] · P[[[ns

⊠
]]τ̄ηη = β]

=
∑

α∈[[m̃]]
τ̄η
η

β∈[[ns
⊠
]]τ̄η
η

[

P[D
τ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄ηη = α] · P[[[ns

⊠
]]τ̄ηη = β]

− P[D
τ̄η
η (H(1η , β)) = 1] · P[[[m̃]]τ̄ηη = α] · P[[[ns

⊠
]]τ̄ηη = β]

18

(since
∑

β∈[[ns
⊠
]]τ̄η
η

P[[[ns
⊠
]]τ̄ηη = β] = 1 and

∑

α∈[[m̃]]
τ̄η
η

P[[[m̃]]τ̄ηη = α] = 1)

=
∑

α∈[[m̃]]
τ̄η
η

β∈[[ns
⊠
]]τ̄η
η

∩Lη

[

(

P[D
τ̄η
η (H(1η , α)) = 1]− P[D

τ̄η
η (H(1η , β)) = 1]

)

· P[[[m̃]]τ̄ηη = α] · P[[[ns⊠]]
τ̄η
η = β]

]

+
∑

α∈[[m̃]]
τ̄η
η ∩Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

[

(

P[D
τ̄η
η (H(1η , α)) = 1]− P[D

τ̄η
η (H(1η , β)) = 1]

)

· P[[[m̃]]τ̄ηη = α] · P[[[ns⊠]]
τ̄η
η = β]

]

+
∑

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

[

(

P[D
τ̄η
η (H(1η , α)) = 1]− P[D

τ̄η
η (H(1η , β)) = 1]

)

· P[[[m̃]]τ̄ηη = α] · P[[[ns⊠]]
τ̄η
η = β]

]

(splitting cases on ∈ Lη and 6∈ Lη)

≤
∑

α∈[[m̃]]
τ̄η
η

β∈[[ns
⊠
]]τ̄η
η

∩Lη

P[D
τ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄ηη = α] · P[[[ns

⊠
]]τ̄ηη = β]

+
∑

α∈[[m̃]]
τ̄η
η ∩Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

P[D
τ̄η
η (H(1η, α)) = 1] · P[[[m̃]]τ̄ηη = α] · P[[[ns

⊠
]]τ̄ηη = β]

+
∑

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

[

(

P[D
τ̄η
η (H(1η , α)) = 1]− P[D

τ̄η
η (H(1η , β)) = 1]

)

· P[[[m̃]]τ̄ηη = α] · P[[[ns
⊠
]]τ̄ηη = β]

]

(since P[D
τ̄η
η (H(1η, β)) = 1] ≥ 0)

≤
∑

β∈[[ns
⊠
]]τ̄η
η

∩Lη

P[[[ns
⊠
]]τ̄ηη = β] +

∑

α∈[[m̃]]
τ̄η
η ∩Lη

P[[[m̃]]τ̄ηη = α]

+
∑

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

[

(

P[D
τ̄η
η (H(1η , α)) = 1]− P[D

τ̄η
η (H(1η , β)) = 1]

)

· P[[[m̃]]τ̄ηη = α] · P[[[ns⊠]]
τ̄η
η = β]

]

(sinceP[D
τ̄η
η (H(1η , α)) = 1] ≤ 1,

∑

α∈[[m]]
τ̄η
η

P[[[m̃]]τ̄ηη = α] = 1 and
∑

β∈[[ns
⊠
]]τ̄η
η

\Lη

P[[[ns
⊠
]]τ̄ηη = β] ≤ 1)

≤
1

2p(η)
+

∑

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

[(

P[D
τ̄η
η (H(1η , α)) = 1]− P[D

τ̄η
η (H(1η , β)) = 1]

)

· P[[[m̃]]τ̄ηη = α] · P[[[ns⊠]]
τ̄η
η = β]

]

. (4)

(by Lemma 5.5 (2x) using the polynomial 4p(η)|Lη |, provided that η is large)

Now suppose that for all α ∈ [[m̃]]τ̄ηη \ Lη and all β ∈ [[ns
⊠
]]τ̄ηη \ Lη we have

P[Dτ̄η
η (H(1η, α)) = 1]− P[Dτ̄η

η (H(1η, β)) = 1] <
1

2p(η)
.

19

Then, continuing from (4), we get a contradiction:

1

p(η)
<

1

2p(η)
+

∑

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

1

2p(η)
· P[[[m̃]]τ̄ηη = α] · P[[[ns⊠]]

τ̄η
η = β]

=
1

2p(η)
+

1

2p(η)

∑

α∈[[m̃]]
τ̄η
η \Lη

β∈[[ns
⊠
]]τ̄η
η

\Lη

P[[[m̃]]τ̄ηη = α] · P[[[ns
⊠
]]τ̄ηη = β]

≤
1

2p(η)
+

1

2p(η)
.

Therefore, there must be an α ∈ [[m̃]]τ̄ηη \ Lη and a β ∈ [[ns
⊠
]]τ̄ηη \ Lη such that

1

2p(η)
≤ P[Dτ̄η

η (H(1η, α)) = 1]− P[Dτ̄η
η (H(1η, β)) = 1].

Hence D breaks oracle indistinguishability, contradicting the assumption on
〈H,V〉. 2

Theorem 5.7 (Soundness) Let m and m′ be acyclic messages. Then m ∼=
m′ =⇒ [[m]] ≡ [[m′]].

Proof. The assumption that m ∼= m′ means that pattern(m) ≈ pattern(m′).
Therefore we get [[pattern(m)]] = [[pattern(m′)]]. Next, by Lemma 5.3 we
get [[encpat ◦ hashpat(m)]] = [[encpat ◦ hashpat(m′)]]. Now, by applying Theo-
rem 5.4 two times, we obtain [[hashpat(m)]] ≡ [[hashpat(m′)]]. Finally, we start
with m and repeatedly apply Theorem 5.6, replacing one hash at a time by ⊠,
and arrive at hashpat(m). This shows that [[m]] ≡ [[hashpat(m)]] and similarly
[[m′]] ≡ [[hashpat(m′)]]. Therefore [[m]] ≡ [[m′]]. 2

6 Completeness

Although soundness results allow us to port proofs of secrecy properties
from the symbolic world to the computational world, it does not permit to
port, for instance, authenticity and integrity results. For example, consider a
protocol in which an agent A chooses a nonce n and commits to this nonce
by sending h(n) to another agent B. Later in the protocol, A will reveal the
nonce n by sending n itself to B. Security in this setting means that A cannot
change her choice after sending h(n). In the symbolic world, this is guaranteed
by the fact that the message h(n)n (the concatenation of the relevant messages
in the protocol run) is observationally distinct from h(n)n′, with n′ 6= n. We
would like to be able to conclude from this symbolic property that [[h(n)n]] is
computationally distinct from [[h(n)n′]], since that is needed to guarantee the
security in the computational world.

20

What is needed here is completeness: computational equivalence of [[m]]
and [[m′]] should imply observational equivalence of m and m′. For the orig-
inal Abadi-Rogaway logic, completeness under appropriate conditions on the
encryption scheme was proven by Micciancio and Warinschi [MW04a].

This section now shows that the interpretation proposed in the Section 4
is complete. Throughout this section we assume that the encryption scheme
〈K, E ,D〉 is type-0 secure, well-spread, and confusion free, and that the prob-
abilistic hash scheme 〈H,V〉 is collision resistant and oracle indistinguishable.

Throughout the completeness proof we follow the steps of Micciancio–Wa-
rinschi and their notation when possible. We recall here some of their results
as they are used in our proof.

In the original Abadi-Rogaway logic, the useful information for an adver-
sary is determined by the set of keys she can learn. We define the function
arecover and its computational counterpart brecover as in [MW04a]. There
they are called recoverable and getkeys. These functions extract the set of keys
observable by an adversary from a symbolic message and a bitstring respec-
tively.

Definition 6.1 The function arecover : Msg → P(Key) is defined by

arecover(m) = arecover(m, |m|)

where arecover : Msg × N→ P(Key) is given by

arecover(m, 0) = ∅

arecover(m, d+ 1) = Fkr(m, arecover(m, d))

and Fkr : Msg × P(Key)→ P(Key) is given by

Fkr(〈m1, m2〉, U) = Fkr(m1, U) ∪ Fkr(m2, U)

Fkr(k, U) = {k} ∪ U

Fkr({|m|}
r
k, U) = Fkr(m,U), if k ∈ U ;

Fkr(m,U) = U, in any other case.

The function brecover : Str→ P(Keys) is defined by

algorithm brecover(µ) :
Gets all the keys in the bitstring µ

with high probability.

U ′ := ∅

do:

U := U ′

U ′ := Ckr(µ, U)

until U = U ′

return U

21

where Ckr : Msg ×P(Keys)→ P(Keys) is defined by

Ckr(κ, U) = {κ} ∪ U

Ckr(µ1µ2, U) = Ckr(µ1, U) ∪ Ckr(µ2, U)

Ckr(ǫ, U) = Ckr(µ, U), if ∃!κ ∈ U s.t. D(ǫ, κ) = µ 6= ⊥;

Ckr(µ, U) = U, otherwise.

Note that brecover can be computed in polynomial time: we can assume
without loss of generality that the size of the output of the decryption al-
gorithm is smaller than the input ciphertext (since the encryption scheme is
randomized). Then Ckr recurses a linear number of times and every iteration
of the until loop of brecover adds at least one key to U ′ and therefore the
number of iterations is bounded by the maximum number of keys in µ.

The following lemma also from [MW04a] shows the relation between these
two functions.

Lemma 6.2 Let Π = 〈K, E ,D〉 be a confusion free encryption scheme and let
m ∈Msg. Then

P[τ ← Coinsη(m); brecover([[m]]τη) 6= [[arecover(m)]]τη]

is a negligible function of η.

Proof. We refer the reader to the original paper for a complete proof of this
lemma. The hashes that appear in our logic have no influence at all. 2

In our extended logic, due to the hashes, it is not true any more that the
only useful information for an adversary is the set of keys. Any message an
adversary can learn might be the pre-image of a certain hash value. Therefore,
we need to be able to compute the closure (up to a certain size) of a given
message or bitstring. For this reason the closure operators defined below are
closed (up to a certain size) under pairing but not under encryption or hashing.

Definition 6.3 The function aclosure : Msg × N → P(Msg) computes the
messages in the symbolic closure of a message, up to a certain size d:

aclosure(m, d) = aclosure(m, d, arecover(m))

where aclosure : Msg × N×P(Key)→ P(Msg)

aclosure(m, d, U) = asynth(aanalz(m,U), d).

Here the function aanalz : Msg × P(Msg) → P(Msg), defined below, splits
a message in all its meaningful subterms, using the keys in U , when possible,
for decrypting.

aanalz(〈m1, m2〉, U) = aanalz(m1, U) ∪ aanalz(m2, U)

22

aanalz({|m|}rk, U) = {{|m|}
r
k} ∪ aanalz(m,U), if k ∈ U ;

aanalz(m,U) = {m}, in any other case.

The function asynth : P(Msg) × N → P(Msg) generates all possible vectors
of messages in U of size up to d:

algorithm asynth(U, d) :

U1 = U

for i = 2 to d

Ui := ∅

for each m ∈ U

for each v ∈ Ui−1

Ui := Ui ∪ {〈m, v〉}

return Ud

algorithm bsynth(U, d) :

U1 = U

for i = 2 to d

Ui := ∅

for each µ ∈ U

for each ω ∈ Ui−1

Ui := Ui ∪ {µω}

return Ud

Next, the functions bclosure : Str×N→ P(Str), banalz : Str×P(Str)→
P(Str) and bsynth : P(Str)×N→ P(Str) are the computational counterparts
of aclosure, aanalz and asynth respectively:

bclosure(µ, d) = bclosure(µ, d, brecover(µ))

where bclosure : Str× N× P(Keys)→ P(Str) is defined by

bclosure(µ, d, U) = bsynth(banalz(µ, U), d)

and

banalz(µ1µ2, U) = banalz(µ1, U) ∪ banalz(µ2, U)

banalz(ǫ, U) = {ǫ} ∪ banalz(µ, U), if ∃!κ ∈ Us.t.D(ǫ, κ) = µ 6= ⊥;

banalz(µ, U) = {µ}, in any other case.

Note that for a fixed d ∈ N, bclosure(µ, d) can be computed in a time that is
polynomial in |µ|.

Now we show that the proposed functions behave similarly with high prob-
ability.

Lemma 6.4 Let m ∈Msg, d ∈ N and T ⊆ Key. Then the probability

P
[

τ ← Coinsη(m); bclosure([[m]]τη , d, [[T]]
τ

η) 6= [[aclosure(m, d, T)]]τη

]

is a negligible function of η.

Proof. We prove by induction on the structure of m that the probability

P
[

τ ← Coinsη(m); banalz([[m]]τη, [[T]]
τ
η) 6= [[aanalz(m, T)]]τη

]

23

is a negligible function of η. The original statement follows from this, using
that asynth and bsynth have similar behavior.

The only non-trivial case is that of m = {|m1|}rk.

• If k ∈ T , then [[k]]τη ∈ [[T]]τη. Next

P[τ ← Coinsη(m); banalz([[m]]τη, [[T]]
τ
η) = [[aanalz(m, T)]]τη]

= P[τ ← Coinsη(m); banalz([[m]]τη , [[T]]
τ

η) = [[{m} ∪ aanalz(m1, T)]]
τ

η]

≥ P[τ ← Coinsη(m); [[m]]τη ∪ banalz([[m1]]
τ

η, [[T]]
τ

η) = [[{m} ∪ aanalz(m1, T)]]
τ

η

∧∀κ ∈ [[T \ k]]τη : D([[m]]τη , κ) = ⊥]

≥ P[τ ← Coinsη(m); banalz([[m1]]
τ

η , [[T]]
τ

η) = [[aanalz(m1, T)]]
τ

η

∧∀κ ∈ [[T \ k]]τη : D([[m]]τη , κ) = ⊥]

≥ 1− (P[τ ← Coinsη(m); banalz([[m1]]
τ

η, [[T]]
τ

η) 6= [[aanalz(m1, T)]]
τ

η

∨∃κ ∈ [[T \ k]]τη : D([[m]]τη, κ) 6= ⊥])

≥ 1− (P[τ ← Coinsη(m); banalz([[m1]]
τ
η, [[T]]

τ
η) 6= [[aanalz(m1, T)]]

τ
η]

+P[τ ← Coinsη(m); ∃κ ∈ [[T \ k]]τη : D([[m]]τη, κ) 6= ⊥])

≥ 1− (ε1(η) +
∑

κ∈[[T\k]]τη

P[τ ← Coinsη(m);D([[m]]τη, κ) 6= ⊥])

≥ 1− (ε1(η) + ε2(η) · (|T | − 1)) ,

where ε1, ε2 are the negligible functions from the induction hypothesis and
confusion freeness respectively.

• If k 6∈ T , then [[k]]τη 6∈ [[T]]τη. Next

P[τ ← Coinsη(m); banalz([[m]]τη, [[T]]
τ
η) = [[aanalz(m, T)]]τη]

= P[τ ← Coinsη(m); banalz([[m]]τη, [[T]]
τ
η) = [[{m}]]τη]

≥ P[τ ← Coinsη(m); banalz([[m]]τη, [[T]]
τ
η) = [[{m}]]τη
∧∀κ ∈ [[T]]τη : D([[m]]τη, κ) = ⊥]

= P[τ ← Coinsη(m); [[m]]τη = [[{m}]]τη ∧ ∀κ ∈ [[T]]τη : D([[m]]τη, κ) = ⊥]

= 1− P[τ ← Coinsη(m); ∃κ ∈ [[T]]τη : D([[m]]τη, κ) = ⊥]

≥ 1−
∑

κ∈[[T]]τη

P[τ ← Coinsη(m);D([[m]]τη, κ) = ⊥]

≥ 1− ε(η) · |T | ,

where ε is a negligible function due to confusion freeness. 2

The following is an extended version of the function psp from [MW04a],
which is the computational counterpart of pattern. This function takes a bit-
string as an argument and tries to recover the pattern associated to it. This
means that given as input a sample from [[m]], the function outputs (a re-
naming of) pattern(m) with high probability. As in [MW04a] we let f be an

24

arbitrary (but fixed) injective function that associates an identifier (i.e., an
element of Nonce ∪Key ∪ Const) to each bitstring of primitive type (i.e.,
ν, κ, ς).

Definition 6.5 The function psp : Str× P(Str)→Msg is defined by

psp(µ1µ2, U) = 〈psp(µ1, U), psp(µ2, U)〉

psp(ǫ, U) =







{|psp(D(ǫ, κ), U)|}R(ǫ)
f(κ) , if ∃!κ ∈ U s.t. D(ǫ, κ) 6= ⊥;

2
R(ǫ), otherwise.

psp(ψ, U) =

{

hR(ψ)(psp(µ, U)), if ∃!µ ∈ U s.t. V(µ, ψ) = 1;

⊠
R(ψ), otherwise.

psp(µ, U) = f(µ) in any other case.

Theorem 6.6 Let m ∈ Msg and let U be a finite subset of Msg. Then the
probability

P
[

τ ← Coinsη(m); psp([[m]]τη, [[U]]
τ
η) 6≈ pattern(m,U)

]

is a negligible function of η.

Proof. The proof follows by induction on the structure of m. We only show
here the case m = hr(m1). For the remaining cases, the proof follows similarly
to the one in the original Micciancio-Warinschi [MW04a] paper and therefore
we refer the reader to it.
• If m1 ∈ U then

P[τ ← Coinsη(m); psp([[m]]τη, [[U]]
τ

η) ≈ pattern(m,U)]

≥ P[τ ← Coinsη(m); psp([[m]]τη, [[U]]
τ

η) ≈ pattern(m,U)

∧∀µ ∈ [[U \ {m1}]]
τ

η : V(µ, [[m]]τη) = 0]

= P[τ ← Coinsη(m); psp([[m1]]
τ
η, [[U]]

τ
η) ≈ pattern(m1, U)

∧∀µ ∈ [[U \ {m1}]]
τ

η : V(µ, [[m]]τη) = 0]

= 1− P[τ ← Coinsη(m); psp([[m1]]
τ
η , [[U]]

τ
η) 6≈ pattern(m1, U)

∨∃µ ∈ [[U \ {m1}]]
τ
η : V(µ, [[m]]τη) = 1]

≥ 1− P
[

τ ← Coinsη(m); psp([[m1]]
τ

η, [[U]]
τ

η) 6≈ pattern(m1, U)
]

+P
[

τ ← Coinsη(m); ∃µ ∈ [[U \ {m1}]]
τ

η : V(µ, [[m]]τη) = 1
]

≥ 1− ε1(η)− ε2(η) ,

where ε1 is the negligible function from the induction hypothesis and ε2 is
a negligible function from collision resistance, using that an adversary can
compute [[U \ {m1}]]

τ

η.

• If m1 6∈ U , then

25

P[τ ← Coinsη(m); psp([[m]]τη, [[U]]
τ
η) ≈ pattern(m,U)]

= P[psp([[m]]τη, [[U]]
τ
η) ≈ ⊠

r] = P[∀µ ∈ [[U]]τη : V(µ, [[m]]τη) = 0].

Therefore

P[τ ← Coinsη(m); psp([[m]]τη, [[U]]
τ

η) 6≈ pattern(m,U)]

= P[∃µ ∈ [[U]]τη : V(µ, [[m]]τη) = 1] ≤ ε(η) ,

where ε is a negligible function due to collision resistance. 2

Lemma 6.7 Let m ∈Msg and d ∈ N. Then the probability

P [µ← [[m]]; psp(µ, bclosure(µ, d)) 6≈ pattern(m, aclosure(m, d))]

is a negligible function of η.

Proof.

P
[

µ← [[m]]; psp(µ, bclosure(µ, d)) ≈ pattern(m, aclosure(m,d))
]

= P
[

τ ← Coinsη(m); psp([[m]]τη , bclosure([[m]]τη , d)) ≈ pattern(m, aclosure(m,d))
]

≥ P
[

τ ← Coinsη(m); psp([[m]]τη , bclosure([[m]]τη , d)) ≈ pattern(m, aclosure(m,d))

∧ bclosure([[m]]τη , d) = [[aclosure(m,d)]]τη
]

= P
[

τ ← Coinsη(m); psp([[m]]τη , [[aclosure(m,d)]]τη) ≈ pattern(m, aclosure(m,d))

∧ bclosure([[m]]τη , d) = [[aclosure(m,d)]]τη
]

≥1−P
[

τ←Coinsη(m);psp([[m]]τη ,[[aclosure(m,d)]]τη) 6≈pattern(m, aclosure(m,d))
]

−P
[

τ ← Coinsη(m); bclosure([[m]]τη , d) 6= [[aclosure(m,d)]]τη
]

≥ 1− ε1(η)− P
[

τ ← Coinsη(m); bclosure([[m]]τη , d, brecover ([[m]]τη))

6= [[aclosure(m,d, arecover(m))]]τη
]

(where ε1 is the negligible function due to Theorem 6.6)

≥ 1− ε1(η)− P
[

τ ← Coinsη(m);

bclosure([[m]]τη , d, brecover ([[m]]τη)) 6= [[aclosure(m,d, arecover(m))]]τη

∨[[arecover(m)]]τη 6= brecover ([[m]]τη)
]

≥ 1− ε1(η)− P
[

τ ← Coinsη(m);

bclosure([[m]]τη , d, [[arecover(m)]]τη) 6= [[aclosure(m,d, arecover(m))]]τη

∨[[arecover(m)]]τη 6= brecover ([[m]]τη)
]

≥ 1− ε1(η)− P
[

τ ← Coinsη(m);

bclosure([[m]]τη , d, [[arecover(m)]]τη) 6= [[aclosure(m,d, arecover(m))]]τη
]

−P
[

τ ← Coinsη(m); [[arecover(m)]]τη 6= brecover ([[m]]τη)
]

≥ 1− ε1(η)− ε2(η)− P
[

τ ← Coinsη(m);

bclosure([[m]]τη , d, [[arecover(m)]]τη) 6= [[aclosure(m,d, arecover(m))]]τη
]

26

(where ε2 is the negligible function due to Lemma 6.2)

≥ 1− ε1(η)− ε2(η)− ε3(η) ,

where ε3 is the negligible function due to Lemma 6.4. 2

Theorem 6.8 (Completeness) Let m1 and m2 be acyclic messages. Then
[[m1]] ≡ [[m2]] =⇒ m1

∼= m2.

Proof. Let us assume that m1 6∼= m2. Now we show that [[m1]] 6≡ [[m2]] by
building a distinguisher D.

algorithm D(µ) :

d := max(|m1|, |m2|)

if psp(µ, bclosure(µ, d)) ≈ pattern(m1)

return 1

else

return 0

Note that for a randomly chosen µ ← [[m1]]η computing D(µ) takes, with
overwhelming probability, a polynomial amount of time since psp runs with
overwhelming probability in polynomial time and bclosure is of polynomial
complexity.

Next we show that AdvD(η) = |P[µ ← [[m1]]η;D(µ) = 1] − P[µ ←
[[m2]]η;D(µ) = 1]| is not negligible. On the one hand

P[µ← [[m1]]η;D(µ) =1] = P[µ← [[m1]]η; psp(µ, bclosure(µ, d)) ≈ pattern(m1)]

= 1− P[µ← [[m1]]η; psp(µ, bclosure(µ, d)) 6≈ pattern(m1)]

≥ 1− ε1(η) ,

where ε1 is the negligible function from Lemma 6.7. Note that pattern(m1) =
pattern(m1, aclosure(m1, |m1|)). On the other hand

P[µ← [[m2]]η;D(µ) = 1] = P[µ← [[m2]]η; psp(µ, bclosure(µ, d)) ≈ pattern(m1)]

≤ P[µ← [[m2]]η; psp(µ, bclosure(µ, d)) 6≈ pattern(m2)]

≤ ε2(η) ,

where ε2 is the negligible function from Lemma 6.7. Therefore, AdvD(η) =
1− ε1(η)− ε2(η), which is not negligible. 2

7 Active adversaries

We now briefly turn our attention to active adversaries. One could view
the passive adversaries we have been considering up to now as being given

27

the transcript of a protocol run and trying to deduce information from that.
The soundness and completeness results say that the information an adver-
sary could learn in the computational setting is the same as in the symbolic
one. Active adversaries, however, can also try to inject messages in the net-
work while the protocol is running. Hence, to obtain a soundness result, every
meaningful message that an adversary could send in the computational world,
should also be sendable in the symbolic world. Just as IND-CPA is not strong
enough for encryption schemes for this to hold — one needs non-malleability
[MW04b,Her05,MP05] — oracle hashing is not strong enough for hashes.

We now show an explicit example of an oracle hash scheme where an
adversary is capable of creating more messages in the computational world
than in the symbolic world.

Let p = 2q + 1 be a large (i.e., scaling with η) safe prime. Consider the
oracle hash H(x) = 〈r2, r2·f(x) mod p〉 from Section 3.3. Assume that f is
homomorphic for arguments up to length 2η, i.e., f(x+y) = f(x)f(y) mod q
when x + y < 2η. For instance, one could take f(x) = gx mod q when x <
2η and f(x) = h(x) otherwise, assuming that q is also a safe prime, g is a
generator of the quadratic residues modulo q, and h is a collision resistant one-
way function. For simplicity, ignore the tagged representation (see Section 4)
and assume that the representation of the concatenation of two nonces is just
ν ′ν = 2η · ν ′ + ν. Then

H(ν ′ν) = H(2η · ν ′ + ν)

= (r2, r2·f(2
η ·ν′+ν) mod p) (for some r)

= (r2, r2·f(ν
′)2

η
f(ν) mod p) (since r2q = 1 mod p)

= (r2, (r2·f(ν))f(ν
′)2

η

mod p).

Therefore, in the computational world with this particular oracle hash, an
attacker receiving H(ν) = (r2, r2·f(ν)) is capable of producing H(ν ′ν) for a
nonce ν ′ of her own choice. In the symbolic world, however, this is impossible
since hr(n′, n) is not in the closure of {hr(n), n′}.

Next, we show a very simple one-way authentication protocol that, imple-
mented with a malleable oracle hash function, results in a broken implemen-
tation. In this protocol, principal B authenticates to principal A, with whom
he shares a symmetric key kAB. The protocol is the following

(1) A→ B : n
(2) B → A : h(kAB, n)

Consider a homomorphic implementation H of h, as before. Now suppose
that the attacker sees a protocol run: A sends to B a nonce ν, then B replies
H(κAB, ν). Later, the attacker is able to answer a new challenge ν ′ by sending
H(κAB, ν) · H(ν

′− ν) to A. This results in a successful impersonation of B by
the attacker.

The conclusion is that oracle hashing is not strong enough to give a per-

28

fect correspondence between the symbolic world and the computational world
when the adversary is active. Just as for encryption schemes, what would be
needed is a concept of non-malleability [DDN91] for hashes.

8 Conclusions and Future Work

We have proposed an interpretation for formal hashes that is computation-
ally sound and complete in the standard model. Under standard assumptions
on hashes (pre-image and collision resistance), the symbolic world does not
perfectly match the computational world. However, our results show that it
is still possible to achieve this perfect match, for passive adversaries, using
Canetti’s oracle hashing. While considering active adversaries, we have shown
that the security definition for oracle hashing is not strong enough. It would
be interesting to extend the notion of non-malleability for hashes to achieve
this perfect match also for active adversaries.

Acknowledgements. We are thankful to David Galindo for providing the
reference to [Can97a] and insightful comments.

References

[ABHS05] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov.
Soundness of formal encryption in the presence of key-cycles. In Sabrina
De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann,
editors, Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS’05), volume 3679 of Lecture Notes in
Computer Science, pages 374–396. Springer Verlag, 2005.

[ABS05] Pedro Adão, Gergei Bana, and Andre Scedrov. Computational and
information-theoretic soundness and completeness of formal encryption.
In Proceedings of the 18th IEEE Computer Security Foundations
Workshop, (CSFW’05), pages 170–184. IEEE, 2005.

[ABW06] Mart́ın Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing
attacks and the computational soundness of static equivalence. In Luca
Aceto and Anna Ingólfsdóttir, editors, 9th International Conference
on Foundations of Software Science and Computation Structures
(FoSSaCS’06), volume 3921 of Lecture Notes in Computer Science,
pages 398–412. Springer Verlag, 2006.

[AJ01] Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its
computational interpretation. In Naoki Kobayashi and Benjamin C.
Pierce, editors, Proceedings of the 4th International Symposium on
Theoretical Aspects of Computer Software (TACS’01), volume 2215 of
Lecture Notes in Computer Science, pages 82–94. Springer Verlag, 2001.

29

[AR02] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of
cryptography (the computational soundness of formal encryption).
Journal of Cryptology, 15(2):103–127, 2002.

[AW05] Mart́ın Abadi and Bogdan Warinschi. Security analysis of
cryptographically controlled access to XML documents. In Proceedings
of the 24th ACM Symposium on Principles of Database Systems, pages
108–117. ACM Press, 2005.

[Ban04] Gergei Bana. Soundness and Completeness of Formal Logics of
Symmetric Encryption. PhD thesis, University of Pennsylvania, 2004.

[BCK05] Mathieu Baudet, Véronique Cortier, and Steve Kremer.
Computationally sound implementations of equational theories against
passive adversaries. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, Proceedings of the 32nd
International Colloquium on Automata, Languages and Programming
(ICALP’05), volume 3580 of Lecture Notes in Computer Science, pages
652–663. Springer Verlag, 2005.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Philip Rogaway. A
concrete security treatment of symmetric encryption. In Proceedings
of the 38th Annual Symposium on Foundations of Computer Science
(FOCS’97), pages 394–405. IEEE, 1997.

[BLMW07] Emmanuel Bresson, Yassine Lakhnech, Laurent Mazaré, and Bogdan
Warinschi. A generalization of DDH with applications to protocol
analysis and computational soundness. In A. J. Menezes, editor,
Proceedings the IACR International Conference: Advances in Cryptology
(CRYPTO’07), Lecture Notes in Computer Science. Springer Verlag,
2007.

[BPW06] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits
of the BRSIM/UC soundness of dolev-yao models with hashes. In
Dieter Gollmann, Jan Meier, and Andrei Sabelfeld, editors, Proceedings
of the 11th European Symposium on Research in Computer Security
(ESORICS’06), volume 4189 of Lecture Notes in Computer Science,
pages 404–423. Springer Verlag, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st
ACM Conference on Computer and Communication Security (CCS’93),
pages 62–73. ACM Press, 1993.

[Can97a] Ran Canetti. Towards realizing random oracles: Hash functions that
hide all partial information. In Burt Kaliski, editor, Advances in
Cryptology (CRYPTO’97), volume 1294 of Lecture Notes in Computer
Science, pages 455–469. Springer Verlag, 1997.

[Can97b] Ran Canetti. Towards realizing random oracles: Hash functions
that hide all partial information. Cryptology ePrint Archive, Report
1997/007 (http://eprint.iacr.org/1997/007), 1997.

30

http://eprint.iacr.org/1997/007

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. Journal of the ACM, 51(4):557–594, 2004.

[CKKW06] Véronique Cortier, Steve Kremer, Ralf Küsters, and Bogdan Warinschi.
Computationally sound symbolic secrecy in the presence of hash
functions. In Naveen Garg and S. Arun-Kumar, editors, Proceedings
of the 26th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’06), volume 4337 of Lecture
Notes in Computer Science, pages 176–187. Springer Verlag, 2006.

[CMR98] Ran Canetti, Danielle Micciancio, and Omer Reingold. Perfectly one-
way probabilistic hash functions. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC’98), pages 131–140.
ACM Press, 1998.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable
cryptography. In Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing (STOC’91), pages 542–552. ACM Press, 1991.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, 29(2):198–208,
1983.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography.
2001. http://www-cse.ucsd.edu/~mihir/papers/gb.html.

[GGvR08] David Galindo, Flavio D. Garcia, and Peter van Rossum. Computational
soundness of non-malleable commitments. In Liqun Chen, Yi Mu, and
Willy Susilo, editors, 4th Information Security Practice and Experience
Conference (ISPEC 2008), volume 4266 of Lecture Notes in Computer
Science, pages 361–376. Springer Verlag, 2008.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 28:270–299, 1984.

[Gol01] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge
University Press, 2001.

[GvR06] Flavio D. Garcia and Peter van Rossum. Sound computational
interpretation of symbolic hashes in the standard model. In Hiroshi
Yoshiura, Kouichi Sakurai, Kai Rannenberg, Yuko Murayama, and
Shinichi Kawamura, editors, Advances in Information and Computer
Security. International Workshop on Security (IWSEC’06), volume
4266 of Lecture Notes in Computer Science, pages 33–47. Springer
Verlag, 2006.

[Her05] Jonathan Herzog. A computational interpretation of Dolev-Yao
adversaries. Theoretical Computer Science, 340(1):57–81, 2005.

[JLM07] Romain Janvier, Yassine Lakhnech,
and Laurent Mazaré. Computational soundness of symbolic analysis for
protocols using hash functions. In Proceedings of the First Workshop in

31

http://www-cse.ucsd.edu/~mihir/papers/gb.html

Information and Computer Security (ICS’06), volume 186 of Electronic
Notes in Theoretical Computer Science, pages 121–139, 2007.

[KM07] Steve Kremer and Laurent Mazaré. Adaptive soundness of
static equivalence. In Joachim Biskup, editor, Proceedings of
the 12th European Symposium on Research in Computer Security
(ESORICS’07), Lecture Notes in Computer Science. Springer Verlag,
2007. To appear.

[Maz07] Laurent Mazaré. Computationally sound analysis of protocols using
bilinear pairings. In Riccardo Focardi, editor, Preliminary Proceedings
of the 7th International Workshop on Issues in the Theory of Security
(WITS’07), pages 6–21, 2007.

[MP05] Daniele Micciancio and Saurabh Panjwani. Adaptive security of
symbolic encryption. In Joe Kilian, editor, Proceedings of the 2nd
Theory of Cryptography Conference (TCC’05), volume 3378 of Lecture
Notes in Computer Science, pages 169–187. Springer Verlag, 2005.

[MW04a] Daniele Micciancio and Bogdan Warinschi. Completeness theorems of
the Abadi-Rogaway logic of encrypted expressions. Journal of Computer
Security, 12(1):99–129, 2004.

[MW04b] Daniele Micciancio and Bogdan Warinschi. Soundness of formal
encryption in the presence of active adversaries. In Moni Naor, editor,
Proceedings of the 1st Theory of Cryptography Conference (TCC’04),
volume 2951 of Lecture Notes in Computer Science, pages 133–151.
Springer Verlag, 2004.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity
preservation of secure reactive systems. In Proceedings of the 7th ACM
Conference on Computer and Communication Security (CCS’00), pages
245–254, 2000.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-
function basics: Definitions, implications, and separations for preimage
resistance, second-preimage resistance, and collision resistance. In Bimal
Roy and Willi Meier, editors, Proceedings of the 11th Fast Software
Encryption (FSE’04), volume 3017 of Lecture Notes in Computer
Science, pages 371–388. Springer Verlag, 2004.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions. In
Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 80–91, 1982.

32

