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Abstract

A system is said to contain a backdoor when it intentionally includes a means to trigger

the execution of functionality that serves to subvert its expected security. Unfortunately,

such constructs are pervasive in software and systems today, particularly in the firmware

of commodity embedded systems and “Internet of Things” devices.

The work presented in this thesis concerns itself with the problem of detecting backdoor-

like constructs, specifically those present in embedded device firmware, which, as we show,

presents additional challenges in devising detection methodologies. The term “backdoor”,

while used throughout the academic literature, by industry, and in the media, lacks a rig-

orous definition, which exacerbates the challenges in their detection. To this end, we

present such a definition, as well as a framework, which serves as a basis for their discov-

ery, devising new detection techniques and evaluating the current state-of-the-art.

Further, we present two backdoor detection methodologies, as well as corresponding

tools which implement those approaches. Both of these methods serve to automate many

of the currently manual aspects of backdoor identification and discovery. And, in both

cases, we demonstrate that our approaches are capable of analysing device firmware at

scale and can be used to discover previously undocumented real-world backdoors.
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Chapter 1

Introduction

Embedded devices are pervasive in almost every aspect of our existence. They are in our

pockets, around our wrists, and are rapidly becoming a vital part of our daily lives – an

extension of ourselves. Yet, rarely does the layman consider what actually makes these

devices tick, the underlying software, the underlying hardware: which are both designed

by processes that can be influenced by ruthlessness, greed and malice. To the Information

Security community, however, these devices are a terrifying prospect. What we would

have considered embedded devices in the early 2000’s, such as the microcontroller in

our dishwasher, or the board responsible for controlling our alarm clock, are now being

redeveloped as part of what has been coined the “Internet of Things” (IoT) – a blanket

term referring to so-called “smart-devices” that are connected to the public Internet.

Previously, these everyday devices never needed to be considered as part of a network

security policy, or potential attack surface. An intentional bug in such a device would

serve no advantage to its manufacturer: they couldn’t use the device to monitor us, record

our conversations, or leak our personal information. Now, however, full trust is given to

the developers of these smart-devices – that have the potential to do just that.

Unfortunately, this (often implicit) trust is misplaced; security researchers have ex-

1
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posed instances – through a number of high profile cases – of both powerful adver-

saries [188, 189] and consumer device manufacturers [102, 103] deliberately inserting flaws

into software running on embedded devices. While some might argue that these flaws are

inserted to protect us: giving state actors the ability to disrupt the heinous crimes that

take place online, anyone with knowledge of such flaws can exploit them, which is how

malware families such as Mirai (see, e.g., [39]) – a botnet constructed from compromised

IoT devices – come into existence.

Once backdoors are reported, many manufacturers “brush them off” as accidents

(e.g., [45]) or as so-called left-over debug functionality. Some see backdoor-like behaviour

in software as useful to implement features – such as unattended device upgrades (e.g.,

[103]). In other cases, device manufacturers are not entirely to blame: developers share

code and use third-party libraries or software, which they themselves trust implicitly.

And again, that trust is often misplaced. A backdoor coined TCP-32764 [36] – due to the

port it listens on – compromised routers produced by many well-known device vendors,

including, Cisco, Netgear and Linksys. The backdoor was introduced into their firmware

by means of a code fragment shared amongst the affected devices, which originated from

SerComm, a Taiwanese device manufacturer. The Chinese device manufacturer Huawei

was similarly affected by a backdoor that compromised many of its Android-based devices,

by use of a third-party application: Ad-Ups [123]. These problems manifest in part due

to inadequate oversight, but mainly due to the fact that reverse engineering third-party

libraries and software to check for flaws and backdoors is expensive and requires significant

expertise. Moreover, these analysis processes – especially those to locate backdoors – are

difficult to automate.

The term “backdoor” is used as a buzzword in the media – a sensationalist term to

imply a flaw deliberately left within a system. Though it is not just the media that use

the term in such a way: in both industry and academia, the term is used just as loosely.
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We currently lack a rigorous definition as to what a backdoor is and an understanding

of what common components one is made up of. This is in stark contrast to other types

of malware and program flaws: which for the most part, have precise definitions as to

how they manifest, and what characteristics we expect them to exhibit. This lack of

specificity, coupled with the broad array of implementation possibilities for backdoors,

makes it incredibly challenging to develop generalised tools and techniques for their de-

tection. This exacerbates the problem of backdoors that are easy for attackers to find

and exploit, as, without detection tools, those backdoors that manifest simply due to

poor coding practices – such as hard-coded credential checks – are often viewed as easy,

viable implementation strategies by developers. Further hampering the effort to detect

such backdoors – especially those of a more complex or esoteric nature – is the sheer lack

of real-world samples. Documented real-world backdoors are generally simplistic, where

their trigger, or activation conditions rely upon an adversary inputting certain static data

– the most obvious example being hard-coded credentials.

In order for a third-party analyst to assess the security of a particular embedded

device, they require access to its firmware – which can range from a single monolithic piece

of software, to a multi-component system containing an operating system, filesystem and

associated system software. While many consumer device manufacturers provide firmware

update files, which contain partial copies of such software, in some cases, these devices are

not updateable, or employ proprietary automated update mechanisms, such as those often

found in Internet Service Provider (ISP) supplied routers. In these cases, firmware must

be obtained directly from the hardware: making the analysis process more challenging

and expensive, as specialised tools and significantly more expertise are required.

1.1 Contributions

In the following sections, we give an overview of the contributions of this thesis.
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1.1.1 Definitions & Fundamentals for Backdoor Detection

In this thesis, we provide, first and foremost, a much needed rigorous definition of the

term backdoor, as well as an in-depth analysis and discussion of developer intention, deni-

ability, and accountability for manufacturers that deliberately produce devices containing

software with backdoors present. To do this, we propose a framework which allows us to

decompose the abstract notion of a backdoor into its component parts, that is, the minimal

set of components that it needs to function and exhibit backdoor-like behaviour. While

our framework allows us to decompose constructs that are known to contain backdoor-

like functionality effectively, alone, it does not provide a way of reasoning about developer

intent; to overcome this, we provide a number of definitions to discern types of backdoor

implementations: those that are intentional, those that are deniable and those that are

accidental. To demonstrate the completeness of our framework, we provide a number

of case-studies in which we explore concrete implementations of real-world backdoors;

within these case-studies, we decompose each backdoor, and reason about its deniability

and how it can be detected. Our framework is not only useful at aiding in identifying and

reasoning about backdoor-like constructs, but also for developing and analysing backdoor

detection methodologies. To this end, we provide an evaluation of four state-of-the-art

backdoor detection approaches, and show none fully consider a complete model of what

a backdoor is, and thus, their respective approaches are limited.

1.1.2 Detection of Unexpected & Undocumented Functionality

Many complex embedded devices, such as routers, and IoT devices, such as IP cameras

and DVR systems, are built on top of simplified versions of Linux. Thus, they share

many common services such as web-servers, Telnet-daemons, and so on. Web-servers are

usually used to present the configuration interface for a device, while Telnet daemons are

often present – sometimes in a usable state – as an artefact left over from development.
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To reduce the effort of manually analysing firmware, we present a semi-automated ap-

proach to identify unexpected, undocumented functionality in such services. We base our

approach on the following observation: in addition to being present in a large number

of device firmware images, many common services tend to have well-known, well-defined

behaviour. Through extensive manual analysis of instances of services that are present in

Linux-based embedded devices, we were able to identify the services that are prevalent

amongst a significant portion of devices, as well as their key functionality traits and be-

haviours. Using this information, to identify unexpected or undocumented functionality

in a given service, we propose a two-stage process. In the first stage, we identify the type,

or class of the service, and in the second, we check if the service exhibits the function-

ality we expect of the class it was identified as – which ultimately tells us if it contains

unexpected or undocumented functionality. To perform the first stage of analysis, we

use a classifier constructed using semi-supervised learning, which given an input binary

program, is able to identify if it is a common service, and if so, provide a label for the

type of service it is. Then, to perform the second stage, we leverage its assigned label,

and the fact that all identifiable services have well defined behaviour by checking if the

binary only exhibits the behaviour we expect of services associated with the label. To

model our expectations of behaviour and functionality, we use a rule-based system. At

the core of this system is our domain-specific language – Binary Functionality Description

Language – which is able encode expected program behaviour in a high-level manner in

what we call an expected functionality profile. We construct such a profile for each class

of service our classifier is able to detect. Thus, in order to check if the program exhibits

any unexpected functionality, we evaluate it against the previously defined expected func-

tionality profile corresponding to its identified service type, and if it does not conform

to that profile, we consider it to contain undocumented or unexpected functionality, and

perform manual analysis to ascertain the nature of that functionality. To evaluate our
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approach and demonstrate its effectiveness, we use case-studies of both new backdoors we

have found using our method, and existing backdoors that have been previously identified

(by others) using manual analysis.

1.1.3 Detection of Undocumented Commands & Credentials

While detecting the means by which a service might diverge from its expected behaviour

is effective in identifying backdoors and undocumented functionality when that expected

behaviour is known a priori, it is not useful in identifying such functionality when this

is not the case. To this end, we construct a system – again, with the intent of reducing

the effort of manual analysis to detect the conditions required to trigger backdoor-like be-

haviour – which serves as a complementary method to our previously described technique.

As a basis for our approach, we observe that backdoor-like constructs in programs that are

guarded by static-data comparisons – such as hard-coded credential checks, or undocu-

mented commands – are generally only reachable by successful comparison with the static

data involved, and are not accessible by any other means. To automate the detection of

backdoor “triggers” used in this way, we use a two-stage process. In the first stage, we

automatically identify potential static data comparison functions, e.g., functions such as

strcmp, the C++ string equality operator and custom functions that implement related

functionality. In the second stage, we analyse the call-sites of those functions, extract the

static data used as arguments and assign that data a score. We attempt to maximise

the scores assigned to static data that when compared successfully against, results in the

execution of code paths that are not reachable without that successful comparison, i.e.,

they are uniquely reachable via that comparison. These individual scores serve as a basis

for assigning scores to functions, which we subsequently use to perform an ordering of all

of the functions of a binary, relative to how much of their control-flow is influenced by

comparisons with static data, and how much those comparisons impact the reachability
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of their functionality. Using this ordering, we generate a report, which lists functions

and static data by their importance; this serves as a starting point for performing tar-

geted manual analysis of functions that may contain hidden, undocumented commands,

or hard-coded credential checks. We implement our techniques in a tool – Stringer and

with it, we demonstrate how our approach is able to identify new backdoors in firmware

from a number of devices, as well as detect previously (manually) identified backdoors.

1.2 Thesis Overview & Structure

We structure the thesis as follows:

Chapter 2 In this chapter, we introduce the required technical background on analysis

of embedded device firmware. We also introduce terms, definitions, and the required

background in program analysis and machine learning needed for an understanding of the

content presented in later chapters.

Chapter 3 Building on the material presented in Chapter 2, in this chapter, we provide

a study of related work and the current state-of-the-art. In particular, we provide a

discussion of the key challenges surrounding analysis of embedded device firmware and

backdoor detection, as well as an analysis of current backdoor detection methodologies and

implementation approaches. More generally, we cover related work in program analysis

and malware detection, which we see as sister fields to that of this work.

Chapter 4 To remedy the deficiencies in current research outlined in Chapter 3, in this

chapter, we provide a first rigorous definition of what a backdoor is and the process

of backdoor detection. We provide a decomposition of an abstract backdoor’s anatomy

into a framework, which serves as a basis for identifying backdoor-like constructs and

reasoning about them, as well as both a premise for devising new backdoor detection

methodologies, and as a tool for evaluating current approaches. We additionally discuss
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different types of backdoors, their deniability and how they can be detected, which we

demonstrate through a number of case-studies of both academic and real-world backdoor

implementations. Finally, we provide an analysis of state-of-the-art backdoor detection

methods, and in doing so, we show that none consider a complete model of what a

backdoor is, and as a result, their effectiveness is limited. This chapter is based on the

following publication:

Backdoors: Definition, Deniability & Detection by the author and Aurélien Francillon

[175], presented at RAID’18.

Chapter 5 In this chapter, we describe how the similarities in Linux-based embedded

device firmware can be exploited in order to detect backdoors and undocumented func-

tionality in services that are commonly shared amongst such firmware. We describe

the implementation of our system, HumIDIFy, which enables semi-automated analysis of

Linux-based firmware at scale. We demonstrate the effectiveness of our approach through

a number of case-studies of artificial and real-world backdoors that we have detected using

HumIDIFy. This chapter is based on the following publication:

HumIDIFy: A Tool for Hidden Functionality Detection in Firmware by the author, Flavio

D. Garcia, and Tom Chothia [176], presented at DIMVA’17.

Chapter 6 As a complementary approach to that described in Chapter 5, in this chap-

ter, we demonstrate how backdoors can be effectively identified by identification of their

“trigger” conditions. This chapter details how by identifying key static data comparisons

– whose successful comparison leads to execution of uniquely reachable code sequences,

backdoor triggers can be identified automatically, which substantially reduces the time

taken to perform manual analysis of firmware binaries. We present an evaluation of our

approach by use of our tool, Stringer, which we show – through a number of case-studies

– is able to detect the backdoor trigger conditions of various real-world backdoors, some
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of which were previously undiscovered. The content of this chapter is based upon the

following publication:

Stringer: Measuring the Importance of Static Data Comparisons to Detect Backdoors and

Undocumented Functionality by the author, Tom Chothia, and Flavio D. Garcia [174],

presented at ESORICS’17.

Chapter 7 To conclude the thesis, we provide a reflection on the work described in the

previous chapters, draw conclusions and examine directions for future research.
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2.1 Complex Embedded Devices

While complex embedded devices such as routers and Internet of Things (IoT) devices

come in many forms, at the software-level, they share some commonalities; for example,

the vast majority utilise variants of the Linux operating system. Similarly, at the hardware

level, while sensors and other components may differ, the underlying CPU architectures

of the devices fall into two major categories: ARM and MIPS (which reportedly cover

63% and 7% of the total market share [76]). The software component of these devices is

referred to as firmware, which, for complex devices, is generally a collection of components:

a bootloader, an operating system, compiled software, configuration files, and scripts.

2.2 Firmware Acquisition

To perform analysis of firmware, it must first be acquired, which can often be as simple

as downloading it from a device vendor’s website. In other cases, it can be as complex as

directly lifting it from the hardware of a device. Both situations present difficulties, as

noted in the literature [67, 76, 77].

For targeted analysis of a particular device, obtaining its firmware manually, for ex-

ample, by downloading it from a vendor’s website is relatively straightforward. However,

for large-scale analysis of firmware, such an approach is obviously infeasible. Both the lit-

erature (e.g., [67, 76]), and the work presented here (Chapters 5 and 6), have thus, found

it desirable to automate this acquisition process. One approach to do this is through the

use of a purpose-built web-crawler. To be effective, such a crawler needs to be adapted for

each manufacturer’s website, and employ appropriate heuristics to correctly identify links

to firmware images, to avoid downloading unrelated files. While alleviating manual effort,

obtaining firmware in such a manner has a number of disadvantages. For instance, many

firmware images distributed online are packed using esoteric or proprietary algorithms,
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and therefore, cannot be unpacked automatically using off-the-shelf methods or tools. For

those that do unpack using automated methods, a large majority of firmware images are

often incomplete – either due to flaws in the process used to unpack them, or because

they have been distributed as partial firmware updates, and thus, miss executables and

configuration files, crucial for analysis.

The standard tool for unpacking firmware images is binwalk [6], which treats a firmware

image as a collection of files concatenated into a single binary blob. To extract those files,

it first scans the binary blob for so-called magic numbers, or file format identifiers. Upon

encountering such an identifier, it records its offset, and then attempts to parse the data

in the binary blob at that offset as a file-format header related to the identifier. Using the

file-format header, it calculates the length of the embedded file, and proceeds to carve it

from the binary blob. If the file has been packed or compressed using a known algorithm

(e.g., LZMA [34]), a standard utility can be invoked to unpack it; if successful, this

procedure will produce further files, which may also require unpacking. To handle such a

scenario, binwalk performs its extraction processes in a recursive manner. If binwalk finds

a file or embedded file is an image of a file-system, for example, a SquashFS [27] or cramfs

[9] file-system, it will attempt to extract and reconstruct it. Unfortunately, the extraction

process performed by binwalk is far from perfect, and in many cases manufacturers have

been known to use modified standard compression and file-system formats – potentially

to thwart analysis efforts. These non-standard formats often lead the standard utilities

used by binwalk to fail. There have been efforts to overcome these issues, such as the tool

sasquatch [26], which attempts to unpack file-systems that are variants of the common

SquashFS format. However, in general, as binwalk relies on detecting known file-formats

and using mostly standard unpacking tools and methods, it is ineffective when firmware

is itself or composed of proprietary, or non-standard firmware file format(s).

While automating the extraction of firmware components from suspected firmware
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images is a significant challenge in itself, so too is the process of identifying if the extracted

files actually constitute firmware components – as opposed to something else entirely.

Since binwalk will only report if it has successfully been able to extract files, and that

none of the invocations of its sub-utilities have failed, further analysis has to be performed

on the extracted files and directories to perform that identification process. Both [67] and

[77] utilise heuristics in order to perform this identification. They attempt to detect well-

known file paths included in the standard Linux file-system layout, such as the /bin and

/etc directories. However, as with the other processes involved in firmware acquisition,

identification is not perfect. And from both our own experience, and that reported in

the literature, not all firmware conforms to a standard structure. This is especially true

of firmware upgrade files, where often the only files included in those firmware images

are those that will be modified as part of the upgrade process. Unfortunately, without

human intervention, the identification of firmware images must rely on heuristics, which

will obviously miss edge-cases and must be continuously updated to keep up with changes

in firmware, but are a necessary trade-off to facilitate large-scale analysis.

2.2.1 Firmware Acquisition via Hardware Interaction

An alternative to downloading firmware from a device manufacturer – which is required

in cases where vendors restrict access to firmware updates, or perform automated updates

of their devices using device-specific methods – is to extract the firmware from a device

directly. Unlike conventional personal computers, software for embedded devices, i.e.,

firmware, is usually stored in flash memory chips, which are generally soldered onto the

board of a device. In order to access the contents of these chips, specialised tools and

techniques are required.

For the vast majority of complex devices, i.e., that have Linux-based firmware, access

to flash chips (from the software-side) is provided by an abstraction layer called the
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Memory Technology Device (MTD) sub-system [18]; this sub-system allows for generalised

low-level file-system operations such as read, write and erase. A more conventional file-

system provides further abstraction above this basic layer, which might, for example,

be JFFS2 [182]. While many devices deploy a file-system directly on top of a MTD

block device, another possibility is that an Unsorted Block Image (UBI) layer [30] is

used in-between, which acts as a logical volume manager over the underlying MTD block

device sub-system. A UBIFS [107] file-system is most commonly used on top of this

abstraction layer, but other file-systems are possible, such as SquashFS [27]. Due to this

variability, the process of obtaining firmware from a physical device often encounters the

same problems as accessing file-system data from downloaded firmware images, and in

many cases, binwalk, or manual approaches are required to access the file-system data.

Irrespective of the file-system used, or device configuration above the hardware, a

number of (hardware-based) physical interfaces exist on devices that allow varying levels

of access to firmware. In some cases, these can be as high-level as accessing a shell over a

serial connection, in other cases, they can be as laborious as reading firmware block-by-

block directly from the flash chip. The proceeding paragraphs cover the different interfaces

and associated tools for accessing firmware using a hardware-based interface.

Figure 2.1: UART pinout.

Universal Asynchronous Receiver-Transmitter (UART) [140] is perhaps the simplest

means of gaining access to a device’s firmware. The UART interface of a device essentially
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acts as a serial port and allows interaction with the device via a terminal emulator such

as screen [13] or minicom [20]. Physically, a UART interface manifests as a set of three,

possibly four (including VCC, for power) pads or pins (Figure 2.11), these are labelled as

follows: TX (transmission line), RX (receiver line) and GND (ground). A device such as

the Bus Pirate [7] can be used to access this interface by connecting to these pins. The

serial interface can then be accessed using a conventional personal computer connected

to the Bus Pirate. An attractive alternative to the Bus Pirate is the JTAGulator [15]

(Figure 2.2), which can automatically infer the correct configuration required to interface

with the TX and RX pins/pads, irrespective of how they are physically connected to the

JTAGulator; it can then perform UART passthrough, which enables interaction with the

device in the same manner as the Bus Pirate.

Figure 2.2: JTAGulator connected to UART pins.

Firmware can be obtained via UART in a number of ways. As discussed in [76],

many devices have weak administrative passwords, or from our anecdotal experience, no

passwords; thus, once connected via a serial terminal, it is possible to log-in as an ad-

ministrative user i.e., root. Firmware can then be dumped by directly copying from a

1The NC pin in Figure 2.1 stands for “No Connection” or “Not Connected”.
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MTD block device, or by transferring individual files using a protocol such as XMO-

DEM [70], YMODEM [89], or ZMODEM [90], all of which provide varying degrees of

integrity protection for the transfer.

Serial Peripheral Interface (SPI) bus is another interface that can be used to obtain

firmware, though it is less reliable than UART, due to its lack of integrity protection

capabilities. SPI is a synchronous serial communication protocol that allows data transfer

between a Master Control Unit (MCU) and slave peripheral devices (i.e., a flash chip). In

a similar way to UART, the Bus Pirate can be used to interface with a device over SPI,

which acts as a MCU. Communication is carried out over four pins located on the board

of a device: MOSI (for master to slave transfer), MISO (for slave to master transfer), SS

(the select signal, used by the MCU to specify which slave to communicate with), and

SCLK (which allows for synchronisation of data sequences between the devices).

In some cases, even with direct access to the hardware of a device, obtaining its

firmware can be extremely difficult. In these cases, a more holistic approach is often

required. An example of this might be locating a vulnerable service running on a given

device, exploiting it, and using the access obtained as a vector to facilitate dumping

the device’s firmware. For the work carried out in this thesis, we restrict ourselves to

software-based approaches, which are significantly more effective for firmware analysis at

scale.

2.3 Anatomy of Firmware

Once a firmware image has been obtained and unpacked (if required), the result will be in

one of two forms: a single monolithic binary, or an operating system kernel, and associated

file-system. In both cases, a bootloader will often be used to facilitate the loading of the

initial software component(s) of the firmware.

An operating system kernel and associated file-system:
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The bootloader loads the operating system kernel first, which is responsible for

initialisation of drivers, which in turn, facilitate interaction with hardware, such as

sensors. The initial userland processes will then be loaded, which will typically be

stored in (and loaded from) the file-system. The file-system will store all (generally

in a read-only manner) software, configuration files and scripts used to operate the

device.

A single monolithic binary:

The software loaded by the bootloader will typically be bespoke and dedicated to

performing only domain-specific functionality, as well as routines for interacting

with hardware. As a result, performing generalised analysis on devices with this

configuration is much more difficult than for the previous case, as the software on

each different type of device will be radically different.

This thesis focuses on firmware that falls into the former category, specifically Linux-

based firmware, due, in part, to its homogeneity, and because, at the time of writing, its

use is prevalent in the majority of devices on the market (86% according to Costin et al.

[76]). Thus, hereafter, when we refer to firmware, unless explicitly noted, we imply that

which is Linux-based.

During firmware boot, the operating system kernel will initialise the hardware periph-

erals of a given device and then subsequently pass control to the initial userland processes.

In turn, these processes will execute start-up scripts, which will finally start the processes

responsible for the advertised (software-based) functionality of the device. Therefore, if

access to a complete firmware image or corresponding device is not possible, analysing any

available boot scripts – if they are available – can give key insight into what software may

be running on a device. To this end, we performed extensive manual analysis of firmware

file-systems and boot-processes; we found that from a small-scale sample of 92 firmware

images obtained from manufacturer’s websites, only 23 (25%) contained boot scripts.
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mount -t proc proc /proc

mount -t ramfs ramfs /var

mkdir /var/tmp

mkdir /var/ppp/

mkdir /var/log

mkdir /var/run

mkdir /var/lock

mkdir /var/flash

#iwcontrol is required for RTL8185 Wireless driver

#iwcontrol auth &

#busybox insmod /lib/modules/2.4.26-uc0/kernel/drivers/usb/quickcam.o

/bin/webs -u root -d /www -i /var/run/thttpd.pid &

#ifconfig wlan0 up promisc

Figure 2.3: Example of a boot script taken from an IP camera.

Thus, performing a large-scale, meaningful analysis based on the presence of boot scripts

would not produce usable results for the majority of firmware. In the firmware images

that did contain boot scripts, we found that those boot scripts were located in a number

of places: /etc/inittab, /etc ro/inittab, /etc/rc, /etc/rcS, and those scripts often

referenced additional supporting scripts located in the /etc/init.d and /etc ro/init.d

directories. Figure 2.3 shows an example of a boot script (found in /etc/rcS), taken from

an IP camera. What should be noted, is that while a firmware image may contain many

different executables, a large majority of them will never be executed, thus, knowing, or

estimating those that will be started aids in reducing the time taken to analyse a complete

firmware image.

2.3.1 Device Configuration

On many embedded devices, user-configurable information is often not stored within the

file-system of the device; rather, it is stored within a region of flash memory called Non-

Volatile Random Access Memory (NVRAM) – which retains its state between power
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cycles. Meanwhile, the operating system, bootloader and default file-system are generally

stored within Read-Only Memory (ROM). Many devices treat NVRAM as a key-value

store and include utilities such as nvram-get and nvram-set to get and set values stored

there. On a router, for example, the current Wi-Fi passphrase, or administrative interface

credentials, might be stored within the NVRAM, which will be queried by software to

facilitate authentication to the device and its services.

All other device configuration, without performing a firmware upgrade, will be static.

As a result of this, any, e.g., hard-coded passwords or certificates, can be leveraged by

an adversary to compromise a device. A further problem, as noted in the literature

[76], is the use of user accounts with passwords stored in plain-text, weak passwords or,

no password at all. In these cases, should a shell service, such as Telnet or the Secure

Shell daemon be running on a device, where that service is reachable on an unfirewalled,

Internet-facing interface, that device can be accessed, and compromised by a remote ad-

versary with very little effort. In this way, the combination of a shell service coupled with

hard-coded, weak or no credentials, acts as a backdoor into a device. From experience,

we note that while some firmware developers do not explicitly insert hard-coded user ac-

counts into /etc/passwd and /etc/shadow, often, scripts started at boot utilise utilities

such as adduser to create user accounts with such credentials. Thus, searching for such

vulnerabilities is not as simple as examining the contents of e.g., /etc/passwd.

2.3.2 Device Upgrade Mechanisms

Exacerbating the security threats previously discussed is the fact that, while a portion

of devices feature either user-controlled or automated upgrade mechanisms, a portion

of devices do not feature any upgrade mechanism at all (commonly those where their

firmware must be extracted from the device itself). Thus, any security vulnerabilities

that cause a device to compromise the network it is attached to, cannot be addressed by
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any other means than detaching the device from that network, often rendering the device

useless to the end-user. Moreover, while a small portion of technologically proficient

device owners might diligently patch their devices manually, a much larger proportion of

users will not. Thus, even devices that could be patched (assuming firmware is available

that addresses the security concerns) will be left largely vulnerable.

2.4 (Firmware-Oriented) Program Analysis

As previously noted, Linux-based firmware contains executables, which interact – together

with hardware – to provide a device with its advertised capabilities. To perform any type

of analysis of these executables, their program instructions must first be recovered from a

so-called container format, which, in the case of Linux-based firmware, is the Executable

Linking Format (ELF) [33]. This container format contains segments, and instructions

for how those segments should be loaded into memory; this might be, for example, the

pre-initialised data to be mapped into memory starting from a particular address, or

the program instructions, and where they should be mapped into memory. This format

additionally contains the entry point of the program i.e., the address that execution

starts at. A program’s instructions are recovered by the process of disassembly, which

is performed by a tool called a disassembler ; the process of disassembly describes the

translation of binary data into human-readable assembly language instructions.

As with many parts of firmware analysis, unfortunately, the process of disassembly

is not perfect, and the quality of its results greatly impact the quality of any analysis

performed upon the instructions and program structure it helps recover [48]. This is par-

ticularly an issue in the case of malware analysis and backdoor detection: for example, if

areas of code that contain malicious behaviour are left undiscovered by the disassembly

process, an analysis performed on that disassembly will be incomplete and therefore inef-

fective. Thus, selecting optimal tooling and libraries to recover instructions and related
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information is crucial; such tools and libraries are reviewed in detail in Chapter 3.

2.4.1 Program Representation

Prior to translation to machine-code, software written in a high-level language is con-

structed using functions, and a program is executed by means of these functions transfer-

ring control back-and-forth between each-other: i.e., the processor’s control-flow moves

from instruction-to-instruction, and, thus, function-to-function. Recovering this high-

level structure is useful for program analysis: on the one hand, it allows visualisation of

the results of disassembly in a more comprehensible way, and, on the other, it enables the

computation of program properties in a more tractable manner (i.e., intraprocedurally

rather interprocedurally). The following standard notational conventions (inspired by the

literature and [117]) and related definitions are used to represent and express programs,

and their constructs:

• A basic block is a maximal, non-empty, consecutive sequence of instructions, such

that no instruction modifies local control-flow and there is a strict sequential transi-

tion between each such instruction. The last instruction of a block may (condition-

ally) alter control flow (i.e., it is a conditional or unconditional branch instruction),

and the first instruction shall be the target of some intra- or inter- (in the case of a

call) procedural branch instruction.

• A control flow graph (CFG) is a directed (possibly cyclic) graph, expressed as G =

V × E, where each node v ∈ V represents a basic block, and each edge e ∈ E

represents a program branch condition.

• A function f is represented by a CFG with the first instruction of one of its basic

blocks designated as the function entry point fentry.

• A program P is represented as a set of its functions.
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Aside from notational conventions, a number of definitions and graph-theoretic prop-

erties are used when referring to CFGs and their basic blocks:

• For a basic block b, the degree of the block refers to the number of edges connected

to the block. We use the notation degin(b) to refer to the number of incoming edges

into the block, and degout(b) to refer to the number of outgoing edges from the block.

• A block contains instructions; we thus use the notation binsns to refer to those

instructions. We use baddr to refer to the address of the first instruction of a block.

• Within a CFG, for a function f , a block bi is said to dominate a block bj if every

path from the block containing fentry to bj contains bi. A block is said to strictly

dominate another block if bi ̸= bj. The immediate dominator of a block b is the

block that strictly dominates b, where it does not strictly dominate another block

that also strictly dominates b.

• A dominator tree for a CFG is a tree where each node is a block, the start node is the

block containing fentry, and the child nodes of a block are the blocks it immediately

dominates.

As previously stated, processor instruction set architectures used in embedded devices

are not consistent amongst all devices. This creates a problem when we wish to write

generalised analysis passes over the CFGs recovered from the disassembly process – as a

variant of that analysis must be written for each different architecture we wish to support.

Further, each instruction set tends to have many instructions, which are often complex

in nature and there is normally no one-to-one mapping between different instruction sets.

Thus, to simplify analysis, an intermediate language (IL) representation can be used. An

intermediate representation is itself essentially an instruction set that contains far fewer,

more high-level instruction-like constructs than a typical processor instruction set. To
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obtain a representation of a processor’s instruction set in an IL, a process called lifting is

performed; the lifting process takes as input a processor-specific instruction and translates

it to one or more intermediate language constructs, which generally model not only the

localised behaviour of the instruction (e.g., adding two registers and saving the result),

but also the side-effects it may produce (e.g.,modifications to the internal processor flags).

2.4.2 Analysis Methods

Complex firmware contains software, scripts and configuration files. Two main methodolo-

gies exist to observe and analyse the effects of those components, and, both of which have

various advantages and disadvantages, specifically with respect to analysis of embedded

device firmware.

Static Analysis views a piece of software or script without state, often without consid-

eration of an underlying execution environment. Analysis is performed by making

predictions by looking at a so-called dead-code listing: i.e., the instructions, or

higher-level language constructs of a script. It makes assumptions about what code

will be executed, and, thus, will often provide an overestimate of what will eventu-

ally be executed.

Dynamic Analysis considers the live execution state of a running program or inter-

preted script. Thus, analysis is performed upon what has already been executed

up until the currently observed state of execution. In addition to the instructions

or high-level constructs that have been or will be executed, dynamic analysis also

provides a means to view the execution environment, as well as the overall impact

of the program’s execution on the system the program is being run from. For exam-

ple, this might include environment variables modified, files written to, and network

traffic generated. However, dynamic analysis restricts analysis to program paths

executed under a particular program run: which may be an under-estimate of the
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overall functionality that could be executed. A further disadvantage of dynamic

analysis is that inputs to a program are often required to drive execution, which, of

course, limit its scalability significantly.

Even under ideal conditions, both methods have various advantages and disadvantages;

however, for embedded device firmware, where we often have an incomplete firmware

image to analyse, dynamic analysis is comparatively more difficult, and often not possible.

Both [67, 77] demonstrate it is possible to use system emulation software such as QEMU

[23] to emulate enough of a device’s firmware to facilitate running some programs, but

neither approach extends to full system emulation. Where access to a device is available,

differing degrees of analysis are possible: we, of course, can perform static analysis on the

software obtained from the firmware of the device, and, dynamic analysis, in this case,

can generally be made possible via the use of so-called debug stubs, which are special

purpose programs injected into a running system, which facilitate on-device debugging.

Dynamic analysis can be performed via accessing on-board debug functionality through

technologies such OpenOCD [21], which provides a software interface to on-board debug

interfaces such as the JTAG [114] interface, or its two-wire variant, the SWD [3] interface.

2.5 Backdoors as a form of Malware

Malware is a term used to refer to software that, from an end user’s perspective, performs

malicious or unwanted functionality, often without the user’s knowledge. The colloquial

definition often used to describe a backdoor is a modification to a system, which allows

an adversary to access that system in an unauthorised manner, often without the end

user’s knowledge. Thus, using these definitions, a backdoor is most definitely a form of

malware. However, unlike the definitions for malware families such as viruses and worms,

which have distinct properties – such as how they propagate and how they maintain a

presence on a system – the definition of a backdoor is much more open. Therefore, it is
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much more challenging to create generalised methods for their detection: in part due to

their open definition, but mainly due to the unbounded ways in which they can manifest.

This lack of definition is addressed in Chapter 4, while Chapters 5 and 6 address the

problem of backdoor detection.

2.5.1 A Taxonomy for (Firmware) Backdoors

Although backdoors can be implemented in numerous ways, the means by which they

provide an adversary with some level of privileged access to a system generally fall into a

small number of common categories; the following taxonomy provides an overview of the

features of backdoors representative of the most common of those categories.

The first class we consider is that of so-called authentication bypass vulnerabilities,

which is a blanket term used to refer to backdoors that make it possible for a would-be

adversary to bypass the standard authentication mechanism of a program, or system.

The privileged access obtained via the use of such a backdoor, in many cases, will be

equivalent to that of a standard authenticated user, in others, the backdoor may provide

a greater level of access, e.g., through an interface reserved for backdoor-authenticated

users. Concretely, such a vulnerability may manifest in a number of ways; the most

prevalent classes of such implementations are those that rely on static, hard-coded data.

An authentication bypass vulnerability that relies on the use of static program prop-

erties facilitates backdoor access by giving an adversary who is aware of those properties

(and how to exploit them) the ability to bypass standard authentication. From a practical

point-of-view, an adversary exploiting such a backdoor is able to pass from a program

state that is considered unauthenticated to one which is considered authenticated, by a

computation relying on, or comparison with, static-data. On an embedded device, this

static-data might be stored within a program, or the non-volatile storage of the device.

The most common, and blatant type of backdoor covered by this definition, is a hard-
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coded credential check. In the simplest case of such a backdoor, user-input to the standard

authentication routine will be compared against one or more static strings; if these com-

parisons match, then the routine will act as if those inputs were valid credentials. Often,

in practice, however, less obvious examples exist. One such example is “Joel’s backdoor”

[103] – a backdoor found in many D-Link products, which enables an adversary to by-

pass the standard authentication routine of the web-based configuration portal of those

devices, by specifying a certain user-agent when accessing them – a property not usually

associated with authentication.

A less straight-forward type of authentication bypass vulnerability is one that most

often manifests due to an intentional programming “error”. In this case, such an “error”

might be caused by incorrect handling of input passed to a credential verification routine.

While this definition is broad, it is necessarily so, and implies the inclusion of standard,

but intentionally placed memory corruption vulnerabilities – such as buffer overflows.

However, it also covers more explicit cases in which services implement their handling of

protocol messages in such a way that facilitates authentication bypass. Concretely this

might be due to the incorrect handling of global state or permitting invalid transitions

within the underlying state-machine logic that models a protocol.

Backdoors of the aforementioned types generally serve to provide an adversary with

a means to bypass standard authentication and then grant them the same level of access

as a legitimate user of a backdoored program or system. Another category of backdoors,

which manifest as undocumented commands and features often provide an adversary with

additional functionality not available to a legitimate user. In practice, such undocumented

features are commonly accessed through the use of additional, non-standard protocol com-

mands. In other cases, a system, or program, might provide a hidden interface, which an

attacker is able to interact with that serves to facilitate backdoor access. In embedded

device firmware, a backdoor of this kind might take form as an unauthenticated shell
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running, e.g., via a Telnet daemon. In other cases, bespoke or dedicated services may

provide backdoor access; for instance, a service that implements a custom, unauthenti-

cated protocol for executing commands on the device. In practice, many of these bespoke

services are referred to (by their implementer’s) as debug interfaces, which are reportedly

left over as a by-product of development.

The final class we consider (for the work in this thesis) we coin information leakage

backdoors. Backdoors of this kind enable an attacker to leak, or access otherwise privileged

information from a given system. The data leaked may be, for example, the contents of an

arbitrary file or buffer in memory. In embedded device firmware, such a backdoor might

manifest as a dedicated debug service – in a way similar to the previous class of backdoor.

A real-world example of a backdoor of this kind is the TCP-32764 backdoor [36], which

affects devices from many device manufacturers, including Cisco, Linksys and Netgear.

The backdoor manifests as a dedicated service that listens for connections via TCP port

32764, that when provided with specific input, will leak device configuration values –

such as the password for the administrative interface of a device. What distinguishes this

class of backdoor from the previous, is that backdoors of this class do not directly enable

command execution, rather they only facilitate reading privileged information.

An additional class of backdoors – so-called cryptographic backdoors also exist. They

are able to compromise a device through weakening cryptographic primitives, e.g., random

number generators. While we acknowledge that such threats pose a significant problem,

their detection is beyond the scope of the work presented in this thesis.

2.5.2 Backdoors in Firmware

Backdoors, like most malware, can be introduced into a device at various points – both

before the device reaches an end user, such as during development, or afterwards, by an at-

tack performed by an active adversary. For embedded devices, due to the aforementioned



31 2.6. Machine Learning for Malware Detection

lack of a persistent file-system, backdoors are often introduced either through firmware

updates, or shipped with the original device firmware. In the proceeding descriptions,

we account only for software-based backdoors, but do acknowledge that hardware-based

backdoors (e.g., [184]) can just as easily compromise the security of a device, such back-

doors, however, are not in the scope of this thesis. We consider three possible points for

a device to be compromised:

1. Compromised at source In this case, the firmware of the device contains either a

legitimate service, with a backdoor added to it (e.g., [102]), or a dedicated service,

often irrelevant to the advertised functionality of the device that acts as a backdoor

(e.g., [36]).

2. Compromised in transit The device, in this case, is assumed to be secure or

uncompromised in leaving the manufacturer or vendor, and then intercepted by a

third-party whilst in transit and subsequently tampered with before finally reaching

the end-user.

3. Compromised in use The device is compromised due to the exploitation of either,

an operating system kernel, or application-level vulnerability, in which a malware

payload allows a backdoor to persist on the device following a successful exploitation

attempt. There are no end of examples of such malware – targeted-or-not – high-

profile instances include, Flame [126], Stuxnet [116] and that developed by the

so-called Equation group [115].

2.6 Machine Learning for Malware Detection

Detecting if a device is compromised by a backdoor can be modelled as a (binary) clas-

sification problem; i.e., a device is in one of two states: either it is compromised, or not

compromised. Machine learning is a blanket term used to describe generalised techniques
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and algorithms that “learn” classification, regression or clustering models, given a col-

lection of input-data, often referred to as training data. For the purposes of this thesis,

we consider only classification and clustering models. Given a model as input, a machine

learning algorithm is able to classify or cluster further instances of data presented to it,

that are of the same format as the data used to create it. The term attribute or feature

is used to refer to a property of an instance of that data, where such an instance is rep-

resented as a collection, or vector of those properties, commonly named a feature vector.

The process of constructing a model is referred to as training. Different algorithms require

varying degrees of user intervention during this training process, such as algorithm-specific

parameters, which can be used to fine-tune the output model produced. Each algorithm

will make certain assumptions about the data used to train it, specifically in influencing,

for instance, how to produce a corresponding output for a given input. Thus, for a given

problem, the choice of algorithm, as well as the type of output, will be strongly dependent

upon the data available, what format it is in, how much is known about it a priori, and

what we wish to learn from it. This, in turn, will influence the choice of the so-called

learning methodology; for our purposes, we consider three such methodologies:

Unsupervised learning denotes a methodology that will attempt to learn patterns in

the provided input-data, with no specific guidance as to what to learn. This method-

ology requires the least manual effort perform training. The most common task of

algorithms supporting unsupervised learning is to cluster data: that is, learn how

to partition that data into clusters that are similar, or related in some way, often

according to some distance metric.

Supervised learning requires each instance of input-data be a pair containing an input

component and a corresponding output value, or label. An algorithm supporting

supervised learning will learn some function of the input component domain as a

means to map them to values, or labels in the corresponding output domain.
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Semi-supervised learning is essentially a hybrid methodology of supervised learning

and unsupervised learning; it requires a portion of its input-data be labelled – as with

supervised learning, while the rest of its input-data can simply be input components.

A semi-supervised learning algorithm attempts to learn a function mapping data

from the input-component domain to a label, or value in the output-component

domain.

In order to evaluate the quality of a model learned by a machine learning algorithm, a

number of techniques can be used; here, we outline the two most common. In the case of a

clustering algorithm, this would be a classes to clusters evaluative approach, which assigns

known classes/expected cluster labels to clusters generated within a learned model. Such

mappings are derived from the majority value of known class label/expected cluster label

instances mapped to each cluster. The quality of a model, in this case, is computed using

the error in these mappings. While for a classification algorithm, the quality is computed

based on the error between the assigned class labels and the actual class labels. These

measures can be computed either using the training data, or a dedicated set of so-called

test data, the two approaches are detailed below:

k-fold cross-validation refers to when training data is used both to train a model and

evaluate it; this is advantageous if the amount of data is small, or the process of

labelling data is manually labourious. However, it has the downside of potentially

causing overfitting of the input data; this is where the model learned is too specific

to the input data, and not general enough to model the entire input domain. This

situation arises if there is not sufficient variety representative of the entire input do-

main within the training data. k -fold cross-validation is performed by first dividing

the input data into k partitions; one of those k partitions is held back as test or

validation data, and the remaining k − 1 partitions are used as training data. This
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process is repeated k times, where each partition is used once as test data. The k

results are averaged to produce a single estimation of the performance of the model.

Use of dedicated test data refers to a methodology that utilises a separate set of la-

belled data i.e., test data, independent of the training data, to perform evaluation.

Thus, gives the most clear estimate of the (extrapolated) performance of a model –

assuming of course, that the test data is representative of the entire input domain.

To perform evaluation, each instance of test data is used as input to the model under

evaluation, the output of this process is then compared against an expected value,

or label, which is then used to produce an estimate of the performance of the model.

In evaluating a model, a number of properties can be computed, which relate to what

the model classified or clustered, correctly or incorrectly:

True Positive (TP) is the measure of data that is identified as positive that is actually

positive; i.e., a program is classified as containing a backdoor, and it does contain

a backdoor.

False Positive (FP) is the measure of data that is identified as positive that is actually

negative: i.e., a program is classified as containing a backdoor, and it does not

contain a backdoor.

True Negative (TN) is the measure of data that is identified as negative that is actually

negative: i.e., a program does not contain a backdoor, and is classified as not

containing a backdoor.

False Negative (FN) is the measure of data that is identified as negative that is actually

positive: i.e., a program does contain a backdoor, but is classified as not containing

a backdoor.



35 2.7. Chapter Summary

The above definitions are easily understood for binary classification problems (i.e.,

where there is a choice of two outcomes, which can be abstractly labelled as the positive

and negative cases), for non-binary classification problems, it is not immediately obvious

how these measures can be used. For a classification problem such as assigning a data

point a label from a set of labels i.e., a program could be a web-server, FTP-server,

Telnet-daemon, and so on, the properties are computed for each label, for example, for

a web-server, we would consider a positive label of web-server and negative label which

would be any label that is not web-server. From these basic properties, the following

standard measures can be used to quantify the performance of a model:

Precision (P) is the ratio between data correctly identified as positive and the total

amount of data identified as positive: i.e., P = TP
TP+FP

.

Recall (R) / True Positive Rate (TPR) is the ratio between the data correctly iden-

tified as positive and the total amount of data that should have been identified as

positive: i.e., R = TP
TP+FN

.

False Positive Rate (FPR) is the ratio between the data incorrectly identified as pos-

itive and the total amount of data that should have been identified as negative: i.e.,

FPR = FP
FP+TN

Accuracy (ACC) is the ratio between the data correctly identified and all identifications

made: i.e., ACC = TP+TN
TP+FP+TN+FN

.

Error (ERR) is the ratio between the data incorrectly identified and all identifications

made: i.e., ERR = FP+FN
TP+FP+TN+FN

.

2.7 Chapter Summary

In this chapter, we have outlined the necessary background required for understanding

the remainder of this thesis, as well as provided an insight into existing (manual) ap-
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proaches and techniques for binary firmware acquisition and analysis. Furthermore, we

have outlined a number of strategies and metrics for measuring the performance of sys-

tems constructed using machine learning techniques, which are used by both the related

literature and the work we present in Chapter 5.
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As noted in Chapter 2, the process of detecting backdoors within embedded device

firmware draws on techniques and inspired methodologies from a variety of distinct fields.

In this chapter, we explore the literature related to those fields, as well as the small body

of work directly related to backdoor detection.

Since the primary target of backdoor implementations are programs, we investigate

the literature related to program analysis, or more specifically, binary program analysis.

Indeed, the deficiencies in this field are particularly useful to consider as they directly

impact the ability of any detection methodology based upon analysing a program’s code,

either statically or dynamically. We investigate general tools, libraries, and intermediate

37
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languages that have been developed for binary program analysis which can be consid-

ered a base for building more specific analysis tools, for example, to detect backdoors.

Alongside more general program analysis approaches, we review more niche state-of-the-

art techniques for vulnerability discovery, malware detection, and ascertaining semantic

properties of programs – which are all fields intrinsically related to backdoor detection; the

literature here serves as inspiration for the techniques we discuss in detail in Chapters 5

and 6. Further, we discuss techniques explicitly developed to detect security vulnerabil-

ities within embedded device firmware, as well as review approaches taken to large-scale

analysis of those devices. In order to ascertain a complete understanding of the state

of backdoor implementations, we look at the inverse problem to that which we address,

i.e., backdoor implementation strategies. This literature serves to highlight more com-

plex and esoteric backdoor implementations, compared to real-world backdoors that have

been publicly documented – which are often more simplistic in nature, this, in turn, aids

in providing a more suitable definition to the term backdoor and their detection, which

we present in Chapter 4.

3.1 Program Analysis

Program analysis is a broad field of research; in Chapter 2, we discussed how (binary)

program analysis is an essential technique for backdoor detection. In this section, we out-

line the critical problems in program analysis which impose limitations on the practicality

of implemented backdoor detection approaches.

3.1.1 Recovering Program Structure

When attempting to perform any kind of program analysis, the first and perhaps most

fundamental stage involved, is the recovery of an accurate-as-possible representation of

the program under analysis. By this, we mean the recovery of its functions, their asso-
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ciated CFGs and any referenced data. Unfortunately, the process of this recovery, i.e.,

disassembly, is an undecidable problem [149]. Having an incomplete view of a program

– especially when attempting to detect backdoors or bugs – is particularly problematic

for building practical tools. To understand why, consider the following scenario: suppose

a code structure in which a particular backdoor manifests is not correctly recovered and

what is recovered is used as input to a backdoor detection tool which will output if a

given program is benign or malicious. In such a case, the program analysed will likely

be identified as benign, when in fact it contains something malicious – not due to a flaw

in the backdoor detection method, but due to the incomplete structure recovered and

supplied to it as input. Andriesse et al. [48] examine the difficulties in recovering program

structure, in particular, they address the process of disassembly and highlight the impact

the challenges examined upon program analyses subsequently performed upon the results

of disassembly.

The fundamentals of program analysis are given an in-depth treatment in numerous

works, such as [138] and [117]. In this section, we review related work in this area,

which serves to address specific challenges in disassembly and program structure recovery.

Cojocar et al. [73] for instance, attempt to tackle the problem of switch-case recovery.

Switch-case constructs pose a challenge for disassemblers as, often, their jump targets are

dependent upon program input, and thus, will be dynamically computed at program run-

time. Disassemblers often employ heuristics to estimate these jump targets, which can

lead to the incomplete recovery of program instructions in the case of under-estimation.

Consider the switch-case construct depicted in Figure 3.1, in this case, the branch target is

dependent upon the variable v. Here, a compiler may generate code that utilises a so-called

jump-table, as opposed to translating the construct into a series of cascaded if-then-else-

like branches, such a table will often be embedded (as data) within the code section of

a binary. In doing so, the generated code will violate the assumptions made by many
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switch (v) {

case 10:

// ...

case 20:

// ...

...

default:

// ...

}

Figure 3.1: Switch-case construct.

static analysis methodologies (e.g., code and data are not mixed), and therefore result

in incomplete recovery of program structure (and instructions). The authors attempt to

recover the jump targets of such constructs using a tailored Value Set Analysis (VSA)

[51]; they demonstrate the effectiveness of their approach by evaluating it on a number

of binaries from various public datasets, compiled using both Clang [8] and GCC [12].

For Clang compiled binaries from the SPEC dataset [28], which contains 828 switch-case

constructs implemented as jump tables, their technique is able to recover a total of 763

jump tables, outperforming IDA Pro [14] – the industry standard tool for disassembly,

which recovers only 11 instances successfully. While for GCC compiled binaries, their

approach achieves comparable performance.

A further problem faced by disassemblers is function start identification, i.e., given a

series of disassembled instructions, identifying where a function starts. Such identification

is critical for performing many types of analysis effectively, for example, intraprocedural

analyses. Traditionally, to perform identification, tools such as IDA Pro have relied on

sophisticated heuristics, which have to be continuously updated to incorporate changes

introduced through different compiler optimisations and versions. To improve upon such

heuristic-based approaches, Bao et al. [53] propose the use of machine learning to classify

function start patterns. For their system, Byteweight, they train a classifier using super-

vised learning on a dataset of instruction sequences indicative of function prologues, i.e.,
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function start patterns. On the dataset they use to evaluate their classifier, they show

Byteweight is able to consistently outperform IDA Pro on ELF binaries (for both the x86

and x86-64 architectures) and performs comparably to IDA Pro on PE executables. Shin

et al. [165] similarly attempt to tackle the problem using a machine learning approach;

they note deficiencies in the approach and results presented by the authors of Byteweight

– both in their stated accuracy and run-time performance, and ultimate feasibility for

real-world application. They propose using recurrent neural networks (see, e.g., [110]),

which when trained and evaluated on the same dataset as the aforementioned approach,

trains faster (by an order of magnitude) and has a reduced error-rate on six out of eight

benchmarks, while remaining comparable on the remainder.

Andriesse et al. [49] propose an approach, as well as an open-source implementation

of that approach, Nucleus [44], which addresses function start detection by an alternative

means. As with [53] and [165], they aim to identify function starts in a compiler and ar-

chitecture agnostic manner, but additionally attempt to mitigate the need for things such

as classifier retraining – required by both of those approaches in order to account for new

compiler optimisations, and conventions. In place of machine learning, Nucleus gradually

refines a so-called Interprocedural CFG (ICFG). An ICFG is generated from a disassem-

bly produced through the use of the linear sweep algorithm (see, e.g., [162]); recent work

finds such an approach to be effective [48], despite its apparent simplicity. They then

refine the ICFG by pruning edges generated by call-type instructions, i.e., interproce-

dural control-flow, which enables them to discover the entry-points of functions that are

called directly. These entry-points are subsequently expanded by following control-flow

(without consideration of flow direction). Remaining function starts are identified via

connected components analysis (see, e.g., [101]) combined with intraprocedural control-

flow analysis. The authors evaluate Nucleus upon a different dataset of binaries compared

to the previously described approaches – citing concerns that the dataset used by those
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approaches is biased due to many binaries sharing common functions. In their evaluation,

Nucleus is shown to outperform Byteweight, IDA Pro and Dyninst [55] (a binary analysis

framework implementing an alternate approach to function start identification, discussed

further in §3.1.4).

3.1.2 Cross Platform Analysis

Since embedded device manufacturers build their devices on multiple, differing hardware

architectures (e.g., ARM and MIPS), techniques applicable for performing cross-platform

analysis are necessary for effective analysis. This requirement poses a problem: if an

analysis pass targets the native processor instruction set of a given device, to support

devices of other architectures that analysis must be reimplemented for each additional

architecture it needs to support. To overcome this, the native processor instruction set

can be lifted to an intermediate language (IL), for which the analysis pass needs only to

be implemented once (as described in Chapter 2).

3.1.2.1 Intermediate Representations

Intermediate language representations not only simplify the implementation of analysis

techniques by creating a uniform program representation, irrespective of the original ar-

chitecture a program was written for, they are also able to reduce the number of language

constructs to consider when performing that analysis. That is to say, IL representations

can reduce an extensive, complex instruction set to a small number of simple IL constructs,

which model the functionality of more complex instructions in the source instruction set.

Of course, the quality of analysis possible on an IL representation depends upon the qual-

ity of the lifting procedure and the expressiveness of the IL. When assessing this quality,

we can ask the following questions: are all instructions from the source instruction set

architecture (ISA) liftable into the IL? Are those instructions that are lifted modelled

correctly (including their side effects)? Kim et al. [118] evaluate the correctness of three
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state-of-the-art binary lifters: PyVEX [167], BAP [63] and BINSEC [81]. In their evalua-

tion, they find bugs in all of the lifters and demonstrate that none of the lifters are able to

correctly lift all of the instructions they were tested upon from the source ISAs evaluated

(x86 and x86-64). Of the three lifters, BAP was able to correctly lift the highest number

of instructions, 206,118 for x86 and 632,035 for x86-64, compared to 135,172 and 516,974

for PyVEX, and 202,652 (x86 instructions) for BINSEC.

A large number of ILs have been proposed by both academia and industry. These ILs

can be divided into two categories: those that are suitable for writing general analyses,

and those that are designed specifically for implementing particular types of analysis.

BIL [97] is a general purpose IL and is part of the BAP framework [63]. BIL provides

high-level constructs such as if statements and while loops; at the time of writing, BAP

provides lifters for ARM (including Thumb extensions), x86 and x86-64. The authors

provide a thorough assessment of their lifters [42], which on their dataset boasts 98.3%

correctness for the ARM ISA, evaluated with a QEMU-based tracer, 99.8% and 99.8% for

x86-64 with binaries built with GCC and Clang, respectively, with evaluation performed

using an Intel Pin tracer [153]. When evaluated with a QEMU-based tracer, they obtain

96.1% correctness for x86-64 binaries built with GCC and 96.3% for binaries built with

Clang. For x86 binaries built with GCC and evaluated with a QEMU-based tracer, they

achieve 99.1% correctness.

VEX [32], while originally an IL designed specifically for use with tooling from the

Valgrind project [31], has been used in isolation – notably in the angr binary analysis

framework [167] as PyVEX. Lifters with VEX as the target IL exist for a significantly

larger number of architectures compared to BIL (AArch64, ARM, MIPS, PPC, x86, x86-

64). However, VEX is unable to directly represent certain instruction side-effects, such

as flag calculations, that are required for correctly modelling some ARM and x86 instruc-

tions, this leads to a loss of semantic information, which can be problematic for certain



3.1. Program Analysis 44

types of static analysis. To represent these computations, so-called helper functions are

used, which are implemented in C in the Valgrind reference implementation, while in

PyVEX, they are reimplemented in Python. Djoudi et al. [81] introduce yet another

IL with their tool BINSEC which – at the time of writing – lifts only a subset of x86

instructions. Dullien et al. [84] propose REIL as a platform-independent IL for static

analysis, which has a number of open-source lifter implementations such as [4] and [22].

ESIL is another IL, which has been developed as part of the Radare2 project [24]; it is

a stack-based language, which simplifies evaluation and automated analysis due to utilis-

ing a uniform representation for all of its constructs. However, like VEX, it handles flag

operations as a special case. Other research [17, 10, 68] has proposed using the LLVM

Intermediate Representation [16] as an IL target for analysis; a number of projects (e.g.,

[25]) implement lifters for it from various source architectures.

3.1.3 Discovering Bugs & Program Properties

As discussed in Chapter 4, the process of detecting certain classes of backdoor often

involves detecting program bugs, while computing program properties such as reachability

satisfaction can be used to detect others. In this section, we discuss the state-of-the-art

in automated vulnerability detection and related work on detecting program properties

– both in the context of binary executables. The notion of bug search is adaptable for

backdoor detection, as backdoor implementations, like vulnerabilities, can be extracted

and searched for.

3.1.3.1 Program & Code Fragment Similarity

One way to automate backdoor detection is to search for a known backdoor, or a compo-

nent thereof. This search may yield binaries that are derivatives of the original program

containing the backdoor (e.g., due to recompilation), different versions of the program, or

programs containing a construct considered a component of the backdoor in the original
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program. Performing this search effectively requires being able to represent a construct or

binary in a generalised, meaningful way suitable for comparison, ideally such that seman-

tic information is preserved. Scalability of a search is directly related to the complexity of

performing comparison; thus, the choice of representation is inherently a trade-off between

attempting to optimise in regard to scalability, or in regard to the accuracy of comparison.

Dullien et al. [85] propose a graph-based representation for executables, which they

utilise to perform binary executable comparison. Their comparison methodology assumes

pair-wise comparisons, where to compare two binaries, they construct a bijective map-

ping between the functions of each binary. This mapping is constructed by iterative

improvement of a partial graph isomorphism (see, e.g., [57]) on the call graphs of each

binary. Using that mapping as a basis, a further mapping between basic blocks and then

functions is computed. They measure the similarity of basic blocks using the similarity of

their instruction sequences, which, in turn, is used to compute a measure of function CFG

similarity. In order to be sensitive to differing compilers and optimisations, their similar-

ity measure attempts to account for different register allocation, instruction reordering

and branch inversion. To handle instruction reordering, each unique instruction within a

block is assigned the value of a small prime number. Two sets of instruction sequences, or

blocks, are said to be permutations of each other if their Small Primes Product (SPP) is

equal (i.e., the product of each prime number assigned to each instruction within a block).

However, for heavily optimised code – such as when a compiler applies function inlining

– constructing such a mapping between two executables is less than effective; in such a

case, both the basic blocks and control-flow graphs they are part of can differ significantly

enough to render matching on syntactic properties (i.e., disassembled instructions) in-

effective. Gao et al. [96] show that the situation is, in fact, worse – they find that in

practice, differences in code generated overall, even due to a single modification of one

function, is rarely isolated just to that function. Using a representation similar to Dullien
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et al. [85], Bourquin et al. [58], employ a technique based upon bi-partite graph matching

(see, e.g., [57]) to measure similarity; however, their computation of similarity relies on

computing a so-called graph edit difference.

Neither of the aforementioned approaches take into account instruction semantics in

their similarity computation. In contrast, Gao et al. [96] devise a technique for finding

differences in binary executables, that does take into account such semantic information.

They utilise a novel graph-based isomorphism technique, which they augment with sym-

bolic execution and theorem proving. Previous techniques such as that by Dullien et

al. [85] use a greedy approach in their construction of graph-based isomorphisms, and so

erroneous matches are be propagated through their isomorphisms. In the proof-of-concept

tool presented by Gao et al. [96], BinHunt, they utilise backtracking when computing

graph-based isomorphisms, which serves as a means to replace erroneous matches. For

a given binary, BinHunt first performs disassembly and then lifts the disassembled in-

structions into an IL representation. Following this, it constructs a call graph for the

entire binary and recovers control-flow graphs for the functions it is able to identify. To

determine if two basic blocks within those CFGs are equivalent, the IR of the blocks are

evaluated using symbolic execution and a theorem prover is used to check whether their

effects are equivalent. The similarity between two functions is computed based upon the

recovered CFGs and the similarity between their basic blocks. The output of the iso-

morphism construction is two sets of triples: matching function pairs and their matching

strength, and matching basic blocks and their matching strength. The matching strength

of function pairs is determined by the size of the maximum common induced subgraph

(see, e.g., [57]) between their control-flow graphs, which, in turn, is used to compute an

overall similarity measure between two given binaries.

Ming et al. [130] propose a derivative tool, iBinHunt, which extends the work by

Gao et al. [96]. As with that work, they compute a graph-based isomorphism to aid in
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measuring similarity. To reduce the number of basic blocks to compare, they perform

a preprocessing step. This step involves monitoring the execution of the two binaries

being compared, where each is supplied with a common input. They use taint analysis to

record all of the basic blocks involved in processing the supplied input; they additionally

augment this analysis by assigning different tags to different components of the input – a

technique they call deep taint, which allows them to match basic blocks that are marked

with the same taint tags, as opposed to all basic blocks tainted. This reportedly reduces

the number of block matchings by up to 74%.

Graph-based representations by definition use graphs, such as function-level CFGs

directly. Directly comparing two graph-based representations, by nature, must be per-

formed in a pair-wise manner. When using standard methods, these comparisons will not

produce results that are transitive, that is, computing the similarity between binaries A

and B, will tell us nothing about the similarity between binaries B and C. Additionally,

while graph-representations are structure preserving, they are computationally inefficient

to compare. The combination of these issues makes graph-based representations largely

impractical for large-scale similarity queries. To attempt to overcome these problems,

other approaches perform similarity computations upon high-level features derived either

from graph-based representations or other information present in program binaries. One

such approach, which uses a combination of CFG structural information and high-level

numeric features, is explored by the authors of discovRE [87]. They demonstrate their

methods are effective in locating the presence of a number of high-profile TLS implemen-

tation bugs, such as Heartbleed [37] and POODLE [132] within a large dataset. In their

approach, they represent a binary’s functions using numeric feature vectors, where the

features represent meta-information related to a given function, for example, the number

of instructions within the function and the total number of basic blocks it contains. Their

proposed system operates in two stages; in the first stage, an input dataset is queried for
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functions that are similar to an input function based upon its computed numeric feature

vectors. In the second stage, the functions that were reportedly similar to that queried

for are compared for structural similarity; this similarity comparison serves to produce

the final output of the system. In order to find similar feature vectors, the authors em-

bed the feature vectors into a vector space and use an unsupervised learning approach to

cluster them. They locate functions similar to a given input function by using it to query

the learned model, which will output a cluster assignment; this cluster will contain the

functions the queried function is most similar to.

Feng et al. [88] tackle the same problem of (known) bug search, applied specifically

to IoT firmware images. Similar to the approach taken by the authors of discovRE [87],

they use numerical feature vectors to represent program constructs. Specifically, they

lift program CFGs into numerical feature vectors. To do this, they first construct a so-

called Attribute CFG (ACFG) for each function, which is a CFG where each basic block

is labelled with a set of attributes. These attributes are both statistical and structural.

For statistical attributes, the authors use information related to the use of string and

numeric constants, the number of instructions it contains, and counts of instructions with

certain properties e.g., arithmetic instructions and transfer instructions (e.g., calls). The

structural attributes used are the out-degree of a block and its betweenness centrality [94]

(a measure of the block’s centrality within the overall CFG). They use bipartite graph

matching (see, e.g., [57]) to compute the similarity between two ACFGs; the structural

information incorporated into each block’s attributes is used to remedy the fact structure

is not taken into account when performing bipartite matching. They then construct

feature vectors by learning a codebook for the ACFGs (performed through unsupervised

clustering) and then learn a quantisation function over the codebook. The resulting

function maps from ACFGs to high dimensional numerical feature vectors representing

ACFGs. Prior to searching for similar ACFGs, the feature vectors are hashed using
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Locality Sensitive Hashing (LSH) (see, e.g., [148]) and then projected onto a so-called

hashing space. They perform the final search using a nearest neighbour query. Genius,

the author’s proof-of-concept tool implementing their approach, outperforms discovRE in

both query time and accuracy.

A further alternative to using graph-based representations for comparison is to encode

a binary, or a component of a binary using a so-called signature. Cesare et al. [65]

use such an approach as a basis for comparing malware binaries. Pewny et al. [146]

utilise a signature-based representation for performing known bug search. They devise

a similarity metric, Tree Edit Distance Based Equational Matching (TEDEM), which

provides a means to identify regions of code within a given binary that are similar to

those of a reference bug. In their approach, a signature is defined as a sub-graph of

the control-flow graph of a function containing a particular bug, which is composed of

complete or partial basic blocks and the transitions between them. To test a given binary

for a particular reference bug, the binary and bug signature’s basic blocks are translated

into so-called expression trees, which summarise the effects of the computation performed

by their blocks. They then use TEDEM to compute a block-centric measure of similarity

between expression trees. TEDEM quantifies the minimum cost required to transform

one block into the other, based upon node replacement and/or insertion/deletion of sub-

trees. They use the blocks most closely matching those from the reference bug as starting

points for matching the remainder of the blocks in the signature. In their approach,

signatures must be specified manually. While this has the disadvantage of requiring an

expert program analyst perform manual reverse-engineering to extract and generate a

given signature, it allows them to specify arbitrary program bugs – which would not be

possible in a completely automated approach.

Pewny et al. [145] propose another method for cross-architecture bug search. They

define so-called bug signatures, which attempt to capture a unified representation of bina-
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ries, irrespective of their target architecture. To do this – as with the previous approach –

they first disassemble the input binary and lift instructions into an intermediate represen-

tation. From that representation, they construct so-called assignment formulas for each

basic block. These assignment formulas capture the behaviour of each block in terms of

input and output variables, which serve to represent their semantics. The authors gen-

erate a so-called bug signature from a fragment of a known vulnerable binary program,

which itself is specified as a set of semantic hashes, which encode the assignment for-

mulas representing its basic blocks. These signatures are used as a basis for computing

block-level similarity, which, in turn, are used to compute a measure of function-level

similarity.

Lakhotia et al. [125] discuss a further means for identifying semantic differences be-

tween binaries through a notion they coin “semantic juice”. Semantic juice is an abstract

representation of a basic block that encodes its semantics. They use this representation in

a similar manner to the previously described works to perform scalable search for similar

code fragments.

Other research considers variants of semantic signatures; for instance, Jin et al. [112]

utilise semantic hashes with clustering to locate functions that are similar based on those

hashes. Ng et al. [137] present Exposé, which aims to identify binary code reuse between

application and library code. They use a number of properties to determine matches,

including semantic information, syntactic representation and a novel numeric distance

measure.

3.1.3.2 Heuristic-based approaches to identifying program properties

Thus far we have explored work which focuses on finding previously known bugs. While

these approaches are adaptable for locating known backdoors, the amount of publicly doc-

umented backdoors is small. Moreover, such approaches do not address the initial effort

in identifying bugs, or in the case of this work, components of backdoors. As opposed to
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searching for known constructs that are indicative of a program property, heuristic-based

approaches work on the notion that particular program behaviour can be characteristic of

a given program property, and attempt to find constructs that exhibit that behaviour. A

buffer overflow vulnerability, for instance, will manifest as a memory corruption, which,

can, in turn, lead a program to crash if control-flow can be hijacked. Checking for a

backdoor, or component thereof in this context, requires identifying program behaviour

that is indicative of backdoor-like behaviour, which is not a well-explored area; we address

this issue in Chapter 4.

Automatic vulnerability detection is closely related to backdoor detection: firstly,

backdoor components can manifest as intentional program bugs; secondly, identifying

inputs used to induce a particular program state (i.e., a crash for control-flow hijack

vulnerabilities) can be used to locate, for example, hard-coded credential checks.

Avgerinos et al. [50] present AEG, reportedly the first end-to-end system for fully

automated exploit generation. Their approach is divided into two phases: vulnerability

identification and exploit generation. They first show that vulnerabilities that result in

control-flow hijacks can be modelled as a formal verification problem and as a result,

are able to demonstrate that targeted symbolic execution is effective in identifying those

vulnerabilities. To overcome deficiencies in symbolic execution – that would otherwise

make it prohibitive for use in such a way (due to the problem of path explosion) – they

devise heuristics for optimal path selection. To do this, they use a priority queue which

relies upon heuristics to decide which paths to check first. These heuristics target paths

which are more likely to be exploitable and attempt to eliminate other paths. Their system

requires access to both the source code and compiled representation of the program they

are analysing.

Cha et al. [66] propose another automated exploit generation system, which, in con-

trast to AEG, works without access to the source code of the program under analysis.
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They introduce a technique called hybrid execution, which combines both offline and online

symbolic execution. Offline symbolic execution, or concolic execution, involves concretely

executing a target binary with an initial seed input and tracing that execution, symbolic

execution is then performed on the execution trace. Offline symbolic execution requires

re-evaluation of entire paths in order to examine different program branches. Online ex-

ecution overcomes this problem by forking two symbolic interpreters at branch points,

as a trade-off by utilising more system resources. In evaluating their system, Mayhem,

the authors show that of the 29 applications they tested, they are able to identify 29 ex-

ploitable vulnerabilities. Other work utilising symbolic execution – targeting other anal-

ysis domains – includes, angr [167] for reverse-engineering, S2E [69] for program analysis,

Firmalice [166] for backdoor detection, [80, 144] for bug-search, KLEE [64] for software

testing, and [170] for software verification.

Fuzzing is a method traditionally used to generate input to a program, in the hope that

that input forces execution down a path that induces a program crash state. Automated

techniques for input generation and monitoring the result of a program processing that

input are applicable for identifying, e.g., hard-coded credential checks. AFL [2] is the

de-facto tool for performing fuzzing. A significant limitation of the approach taken by

AFL is that its generated inputs are based upon randomised byte-strings, thus, satisfying

a string comparison against a specific hard-coded value amounts to blindly guessing that

particular input via brute force.

Stephens et al. [169] present Driller, which introduces a hybrid approach to vulner-

ability discovery based on fuzzing and selective symbolic execution. Both fuzzing and

symbolic execution have drawbacks; the former can get “stuck” when it fails to produce

inputs to explore new paths, the latter can succumb to path explosion. In their approach,

they utilise fuzzing and symbolic execution in a complementary manner. First, fuzzing is

used to explore a so-called initial program “compartment”, that is, all paths that can be
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explored at that point. When the fuzzing stage runs out of such paths, Driller attempts

to find new paths by performing concolic execution – solving input constraints to satisfy

branch conditions that fuzzing is unable to; once new paths have been identified, fuzzing

is resumed; this process is used in a cyclic manner to drive analysis deeper and deeper

into a program’s code. The authors report that their hybrid approach is more effective

than either fuzzing or symbolic execution used in isolation.

VUzzer, a system developed by Rawat et al. [150], employs a similarly augmented

approach to fuzzing. Their method first extracts both control- and data-flow properties

obtained via static and dynamic analysis and uses them to infer characteristics of the pro-

gram under analysis. These characteristics are used to facilitate generation of more inter-

esting or application-aware fuzzing inputs, compared to more traditional target-agnostic

approaches. VUzzer does not require any prior knowledge of the binary it is analysing or

specific information regarding the format of its expected input. The authors show their

approach is able to provide a competitive improvement over a related tool, the AFL-based

AFLPIN [1], without the use of symbolic execution as used in Driller [169], and as a result,

can achieve greater scalability.

3.1.4 Frameworks, Libraries & Tools

A number of frameworks, libraries and tools exist for performing binary analysis. Which,

to varying degrees, can facilitate the creation of more specific binary analysis tools, for

example, for backdoor detection.

IDA Pro [14] is a state-of-the-art commercial, cross-platform disassembler supporting

multiple architectures including, ARM, MIPS, PPC, x86, and x86-64. It can be extended

using plugins and scripts developed in a number of languages: C++, IDC (a language de-

signed specifically for scripting with IDA Pro) and Python. While plugins and scripts are

primarily used to extend its capabilities, IDA Pro can also be executed in a headless con-
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figuration, which enables it to be used (unintrusively) by other programs and scripts via

its scripting interface, e.g., to access information related to the results of its disassembly

process. Binary Ninja [5] is another commercial cross-platform disassembler; it supports

a comparable feature set to IDA Pro, though natively supports fewer architectures. As

with IDA Pro, it can be extended through a plugin interface. Binary Ninja also supports

native lifting of assembly language instructions to a number of ILs, which provide varying

levels of abstraction over the underlying disassembly. Radare2 [24] is an open-source re-

verse engineering framework, which, among other features, provides a disassembler, which

supports a large number of architectures. It can (as with IDA Pro and Binary Ninja) be

scripted from a variety of languages, supports lifting to its own IL, ESIL, and provides an

interpreter for instructions lifted into that representation. BinCAT [56] is a framework

developed in OCaml, which supports three architectures (x86, ARMv7, AArch64), and

provides tight integration with IDA Pro; it features a number of analyses: value analysis

for both memory and registers, taint analysis, and type reconstruction.

While IDA Pro, Binary Ninja and Radare2, provide what amount to front-ends that

aid in reverse-engineering and support scripting and automation as a secondary feature,

other frameworks and libraries exist, which have a greater emphasis for use in tool devel-

opment. angr [167] is one such framework; it is written in Python and has been used as

a basis for developing numerous academic research tools, notably Firmalice [166]. angr

provides a means of performing both static and dynamic symbolic (concolic) analysis,

as well as convenient instruction lifting to the VEX IL [32]. Amoco [179] is a Python

framework for binary static analysis. It supports a number of strategies for performing

disassembly, including: linear sweep, recursive traversal and path-predicate based disas-

sembly – which utilises SAT/SMT solvers to aid in CFG recovery. As with angr, it also

provides facilities for performing symbolic execution of instructions. BINSEC [81] is a

platform for writing binary analysis tools developed in OCaml. At the time of writing,
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it supports x86 ELF binaries and has experimental support for PE executables. It can

perform basic disassembly, symbolic execution and lifting to its own IR format. Dyninst

[55] is a binary instrumentation framework supporting the AArch64, PPC and x86 archi-

tectures. It enables binaries to be both analysed and dynamically patched; to support

development of derivative tools, it provides an API facilitating the insertion of code into

running programs. Triton [154] is a dynamic binary analysis framework written in C++:

it can be interfaced with both C++ and Python. It provides a dynamic symbolic execu-

tion engine, taint analysis, and an AST representation for the architectures it supports

(x86 and x86-64). Binary Analysis Platform (BAP) [63] is a binary analysis framework

written in OCaml and can be seen as the successor to the BitBlaze project [168]. It

supports the x86 and ARM architectures and has partial support for MIPS and PPC,

amongst others. It has usable APIs for C, OCaml, Python, and Rust. Analysis passes

written for BAP generally operate upon the BAP specific IL, BIL; and the framework

provides lifters to that IR as plugins; in its default configuration, it provides lifters for

both x86 and ARM instructions. Adding lifters for other architectures is possible and

BAP provides an API for their development. In earlier versions of BAP – which the tools

described in Chapters 5 and 6 were built with – BAP was generally used as a standalone

library, such that its components could be used in isolation to develop analysis tools.

However, in the current version of BAP, developers are encouraged to implement their

tools as analysis passes in the form of plugins, with the intention that these plugins can

then be chained together to realise more complex passes and analysis tooling.

3.2 Embedded Device Analysis & Security

The previous section outlined general frameworks and tools that can be used as a basis

for creating binary analysis tools; for embedded device firmware, various limitations exist

which prevent the unconstrained use of some of these frameworks directly: for exam-
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ple, those that rely on dynamic execution (as discussed in Chapter 2). Avatar [186] is a

framework designed to facilitate developing dynamic analysis tools that operate on binary

firmware. Avatar enables such analysis by directly incorporating the physical device into

the analysis process; this allows the framework to overcome difficulties that would oth-

erwise make dynamic analysis impossible, i.e., requiring access to peripherals connected

to the device that cannot be reasonably emulated. To perform analysis, Avatar takes a

hybrid approach: essentially acting as an orchestrator between the physical device and an

external emulator. By doing this, Avatar is able to execute the majority of the firmware’s

instructions within an emulator and when I/O operations (that cannot be emulated) need

to be performed, performs them on the physical hardware. Using this scheme as a ba-

sis, Avatar can facilitate the use of other analysis methods that would otherwise not be

possible, without complete firmware emulation – such as dynamic symbolic execution.

The current iteration of the Avatar framework, Avatar2 [135], supports interfacing with

a number of other analysis tools such as QEMU [23], frameworks such as PANDA [83] –

an architectural agnostic dynamic analysis platform, and angr [167].

Research into the security of embedded device firmware presents a number of dif-

ficulties when compared to analysis of software for commodity PCs. These difficulties

arise, in part due to the challenges in adapting current analysis methodologies for use

with such devices, and the fact research into their security has only recently become of

immediate relevance – largely as a result of the pervasiveness of IoT devices. Costin et

al. [75] highlight a number of these difficulties in their analysis of networked CCTV and

video surveillance systems firmware. The first large-scale analysis of embedded device

firmware was performed by Costin et al. [76]. To facilitate their analysis, they built a

system1, which performs automated static analysis of firmware. They demonstrate its ef-

fectiveness on a large dataset (∼32,000 firmware images), in which it is able to identify 38

1Provided as a service at http://firmware.re.

http://firmware.re
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previously unknown vulnerabilities over 693 distinct firmware images. To facilitate their

analyses, their system performs automated acquisition, extraction (using Binary Analy-

sis Toolkit (BAT) [29]) and identification of firmware images from a number of vendors.

In analysing the security of the firmware, they perform analysis not only of binary-level

features, but also search for shared, hard-coded credentials, and hard-coded self-signed

certificates within extracted file-systems. To compare firmware components, they utilise

fuzzy hashing [121] which facilitates clustering and correlation of components, as well

as provides a means to detect previously identified vulnerabilities within their dataset.

Amongst the firmware analysed, they were able to discover backdoors in firmware im-

ages from multiple vendors – simply by searching firmware images for backdoor-related

keywords.

While the approach taken in Avatar [186] generalises for many types of embedded de-

vice, Chen et al. [67] focus on analysing devices with Linux-based firmware. Their system,

FIRMADYNE supports partial emulation and dynamic analysis of firmware components

using QEMU – without access to the physical device under analysis. FIRMADYNE’s

architecture is separated into four distinct stages. The first provides automated firmware

acquisition, which utilises vendor-specific web-crawlers. In the second stage, they extract

the firmware obtained in the first stage; to do this, they use a custom utility based upon

binwalk [6]. The latter two stages are novel to their approach. In these stages, they

perform emulation of the firmware. To do this, they first identify the architecture and

endianness of the firmware, and use this information to select a pre-modified Linux ker-

nel to boot it using QEMU. They instrument their pre-modified kernels to enable the

interception of syscalls. Their emulation proceeds by first learning a suitable network

configuration for the firmware by monitoring networking syscalls; using this learned con-

figuration, they configure the system appropriately and boot it for subsequent analysis. As

discussed in Chapter 2, many Linux-based devices utilise NVRAM as a key-value store to
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save and restore device configuration; to handle this, FIRMADYNE uses a custom version

of libnvram.so, which intercepts accesses to NVRAM, that would otherwise fail during

emulation. In the final stage of FIRMADYNE’s architecture, the authors perform au-

tomated vulnerability analyses using previously known vulnerabilities and corresponding

exploits from the Metasploit framework [19].

As noted in Chapter 2, many embedded devices utilise web-based interfaces for user-

configuration. Costin et al. [77], explore the security of such web interfaces by performing

large-scale dynamic analysis using off-the-shelf vulnerability scanners. To perform their

analysis, they use firmware obtained from crawling device manufacturer’s websites. With-

out access to the devices for the firmware under analysis, the authors resort to emulation.

As discussed in [186] and [67], full system emulation presents difficulties, even for Linux-

based systems. Thus, they emulate “enough” of the firmware to execute the firmware’s

web-server; in many cases, their approach is able to serve both scripts (e.g., via CGI or

PHP) and static web content. As in [67], they utilise QEMU to perform the emulation,

and likewise opt not to use the kernel (if any) included with the firmware image, which

they found to be present in only 5% of the firmware they gathered. Their emulation pro-

cess proceeds by performing a chroot into an unpacked firmware image’s filesystem from

an emulated Linux system with a generic kernel; within this chroot environment, they

execute either a shell (e.g., /bin/sh) or the init binary (e.g., /sbin/init) and proceed

to start a web-server process. They then use automated vulnerability scanners to anal-

yse the web-server and the scripts it serves. Their analysis discovers 225 “high impact”

vulnerabilities in the 246 web-interfaces they were able to emulate successfully.

Since there is no universal distribution source for firmware updates, multiple different

firmware update mechanisms, and no standard way of storing firmware updates, when

presented with a firmware image, identifying the firmware’s manufacturer or device type

is a challenging problem. Costin et al. [78] address this problem; their method utilises
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supervised machine learning to classify firmware images: first to differentiate them from

standard files, then to attribute them to known device vendors and devices types. They

achieve 93.5% accuracy in identifying a given file as a firmware image and 89.4% in

correctly identifying a firmware’s device type.

On most embedded devices, the services that are networked are Internet-facing, hence

potentially remotely exploitable, or otherwise vulnerable should they contain, for example,

a backdoor. The vast majority of these services implement their interaction with a client

(at some level) through the use of protocol parsers. Automatically identifying binaries

that contain parsers, and the functions within those binaries responsible for implementing

those parsers is useful for targeted analysis of specific types of network services (e.g.,

web-servers). Cojocar et al. [74], propose a solution to address locating such components

through the use of machine learning. They train a supervised learning classifier on a

number of simple features of the (LLVM) IL [16] representation of binaries containing

protocol parsers. They perform both control- and data-flow normalisation passes over

the IL representations and subsequently extract feature vectors, which include properties,

such as, basic block count, total number of callers, and number of incident edges to blocks.

To optimise the contribution of specific features, they apply a weighting to each feature.

They evaluate their classifier on software from various embedded devices (a GPS receiver,

power meter, hard drive, and programmable logic controller), and show their system is

effective in locating the parser routines in those examples.

3.3 Backdoor Implementation

Zaddach et al. [187] discuss the implementation of a “stealth” hard drive backdoor and

describe how such a backdoor can be introduced through the use of a hard drive manufac-

turer’s own firmware update tool. An attack of this kind is therefore feasible by a remote

attacker who is first able to compromise a system with a vulnerable hard drive attached.
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Their backdoor is implemented as a modification to a hard drive’s existing firmware. Its

trigger mechanism is implemented by hooking the hard drive’s write routines and perform-

ing monitoring of the buffers supplied to them for the presence of certain so-called magic

values. When these special values are present, the backdoor functionality – data exfiltra-

tion – is performed. The authors report that the overheads induced by their backdoor are

negligible – such that attempting to detect it by monitoring changes in device throughput

is infeasible. In addition to the implementation of their backdoor in physical hardware,

the authors present an implementation of a real-world scenario where their backdoor is

leveraged to exfiltrate data via specially crafted requests to a web-service interacting with

a database (which is stored on the hard drive containing backdoored firmware), which

they demonstrate on emulated hardware.

Following successfully triggering a backdoor, an adversary will have some level of

privileged access to a compromised device, which is similar to the result of a successful

exploitation attempt. Cui et al. [79] detail a case-study on the viability of so-called

firmware modification attacks that can be performed as a result of first compromising

a device. In contrast to “modifications” induced by malware such as Mirai (see, e.g.,

[39]) that do not survive device reboots, they consider permanent modifications. Their

case-study details an attack upon the HP remote firmware update functionality present

within HP LaserJet printers. The vulnerability enables firmware updates to be triggered

on the printer by sending specific commands as a print job. To perform their firmware

modification, the authors first obtain the original firmware of the device by extracting

it from the device’s SPI flash chip; they then reverse-engineer and modify it. Finally,

they show the device’s firmware can be reflashed with their modifications through the

use of the aforementioned vulnerability. While in this case-study the authors show that

such a modification is possible due to the exploitation of a firmware vulnerability, such a

modification attack could just as easily be facilitated by a device backdoor.
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Brocker et al. [62] perform a firmware modification attack upon the integrated webcam

present within MacBooks. In this case, they modify the firmware to covertly monitor

users. The process of implementing their modifications is similar to the attack described

by Cui et al. [79]: they first locate a vulnerability that permits code execution with

sufficient privileges to reflash the device’s firmware and then perform exploitation of that

vulnerability in order to reflash the firmware. Halperin et al. [100] investigate the security

of implantable cardioverter-defibrillators (ICDs) and show that it is possible to modify

the firmware of such devices remotely.

3.3.1 Weird Machines

Andriesse et al. [47] propose a general method for devising covert trigger-based malware.

They describe trigger-based malware as a construct that is designed to execute only when

a specific condition is satisfied – in essence, a backdoor. They design their technique

with the aim that malware implemented using their methods will be difficult to analyse

using both static and dynamic analysis. In order to thwart static analysis, they propose

dividing the malware payload into fragments and distributing them within the binary.

More specifically, they embed them at offsets such that through the standard disassembly

process, they will be interpreted as other instructions. In order to execute such malware,

the authors propose using a program bug, that when exploited causes control-flow to divert

to the first fragment, i.e., its entry-point ; the remainder of its execution then proceeds

by jumping from fragment to fragment. Their use of a program bug in this way serves

to thwart dynamic analysis. The authors assert that even if the bug is found, an analyst

without knowledge of the correct trigger, i.e., the initial address of the first fragment

of the payload, will be unable to state that the bug is intentional, or locate the payload

fragments.

Wang et al. [181] suggest a similar scheme to [47]. That is, they deliberately insert
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vulnerabilities into otherwise benign applications in order to facilitate the delayed exe-

cution of malicious payloads. Their proposal differs in that they do not hard-code their

payload component into the binary. They instead reuse components of the binary as in a

more traditional vulnerability exploitation scenario. Unfortunately, such backdoors (with-

out any knowledge of the developer’s intention) are difficult to reason about and define

concretely. While a binary containing a deliberately inserted bug is indeed a backdoor,

without knowledge of the intent of the application developer, proving this is indeed the

case is impossible. We address the issues presented in this work and that by Andriesse et

al. [47] in detail in Chapter 4.

Tan et al. [172] present a technique for encoding so-called “bugdoor” functionality

within embedded device firmware. They first describe a new programming model – In-

terrupt Oriented Programming (IOP) – which is based upon the side-effects produced by

triggering interrupts. They demonstrate how these side-effects can serve as primitives for

basic computation, and then demonstrate how they can be combined to implement a “bug-

door” program. By the definitions we propose in Chapter 4, a “bugdoor” is essentially

a backdoor, which, as a result of its implementation, is arguably deniable. Deniability

is achieved by using program bugs to implement the backdoor components, which serve

to mask the intention of the implementer. This work and the two previously mentioned

approaches represent types of backdoor implementations using so-called weird machines

as a basis.

A further body of literature considers the re-use of application components for vari-

ous purposes: these relate to the techniques explored within [47], when considered in a

malicious context. Therefore, they can be seen as means of implementing backdoor-like

software components, and we cover them for a thorough treatment of the area. Lu et al.

[127] employ steganography based upon Return Oriented Programming (ROP) (see, e.g.,

[152]). Their system, RopSteg, takes as input a program and a subset of its instructions
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which should be hidden. They hide the instructions by first completely removing them

from the program, they then locate byte-string prefix matches of their byte representations

within the modified program and use the offsets of those matches as starting points for

inserting so-called ineffective instruction sequences. These sequences form ROP-gadgets,

that when combined, are semantically equivalent to the instructions removed. To transi-

tion to the embedded ROP chain implementing their “hidden” functionality, they insert

additional control-flow instructions. Ma et al. [128] also use embedded ROP-gadgets that

preserve semantic meaning, but for the purpose of software watermarking. While Tang

et al. [173] assess the effectiveness of code-reuse techniques to distribute “hidden code”

amongst a binary in the form of ROP-gadgets for the purpose of code obfuscation.

Bratus et al. [60], describe the notion of weird machines. They describe a weird

machine as something that amounts to a programmable machine embedded within another

system (often a program). Using the case of program exploitation as an example, they

state that an exploit serves as a proof of existence of such a weird machine. Such a

machine is executed by specially crafted input data; in the situation where an exploit is

created through ROP, the exploit makes a processor out of the fragments of the program

it reuses, and these fragments act as the instructions of that processor. The authors

detail how a weird machine can be constructed generically; this involves first identifying

components of a target platform that allow manipulation of its internal state via its input;

then forming primitives out of those components, such that programs can be formed by

chaining them together. As outlined in the preceding paragraphs, weird machines can

provide primitives for constructing components of backdoors.

Oakley et al. [139] explore embedding latent computation within the DWARF ex-

ception handling mechanism, which can be found in all GCC compiled executables that

are exception-aware. The DWARF mechanism is essentially a bytecode-driven virtual

machine which is invoked when an exception is triggered. The authors show that byte-
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code for that machine is capable of general computation and as the bytecode is stored in

neither the data nor code sections of a binary, conventional static and dynamic analysis

tools will be ineffective in analysing it. To demonstrate the effectiveness and expressive-

ness of the DWARF mechanism, the authors demonstrate a tool, Katana, which is able

to automatically embed programs written in so-called “Dwarfscript” into standard ELF

executables. They demonstrate a backdoor implemented using their tool, in which an

ELF binary is modified such that when an exception is triggered, it launches a shell, as

opposed to running an exception handler.

Shapiro et al. [164] present a similar mechanism for hidden computation, in this case,

embedded within ELF meta-data. The programs they implement in this computation

model are interpreted by the runtime loader (RTLD), and are formed by purposefully

crafted relocation entries and symbol information. The authors demonstrate a tool, Cob-

bler, which is able to automatically modify an ELF binary to contain arbitrary programs

that can be interpreted by the RTLD. As with the implementation strategy discussed

in [139], if malicious code is embedded through ELF meta-data, standard analysis tools

will be unable to analyse it. Additionally, a program implemented using this mechanism

does not need to be transitioned to from standard code, rather it will automatically be

executed by the RTLD. The authors describe the high-level implementation of a backdoor

embedded within a standard networking utility (ping); their implementation uses a total

of nine relocations entries, one symbol table entry, and makes no changes to the code

sections of the modified binary.

Bangert et al. [52] demonstrate another so-called weird-machine, which is constructed

through specifically crafted page-faults. They demonstrate how such a weird machine can

be realised without executing any CPU instructions. The authors show that a Turing-

complete execution environment is present within the IA32 architecture’s interrupt han-

dling and memory transition tables. During a page-fault the processor becomes “trapped”,
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and in order to resolve the fault, hard-coded logic is performed; by chaining together mul-

tiple faults, it is possible to utilise that logic in order to perform arbitrary computation.

Schuster et al. [161] present another computation model, Counterfeit Object-oriented Pro-

gramming (COOP), which is similar to that of ROP. Similar to ROP, COOP performs

code reuse, however, does so by chaining C++ virtual function calls. The authors demon-

strate that in realistic attack scenarios, COOP is Turing complete and therefore forms

a weird machine capable of general computation. Dolan [82], demonstrates a similarly

Turing-complete weird machine, which can be programmed using just the mov instruction

found in x86-based ISAs.

Vanegue [180] makes steps towards a formal definition of a weird machine. They

use the notion of weird machines to model untrusted code execution. The existence

of such weird machines and the possibilities they hold for implementing components of

backdoors, emphasises that detecting backdoors is a problem bigger than analysing any

single program or system using conventional methods. Similarly, it suggests that no single

solution exists, and while components of backdoors can be identified individually, they are

often not enough to definitively constitute what is informally agreed upon as a backdoor.

While Bratus et al. [60] discuss the relationship between exploits weird machines in

an informal manner and Vanegue [180] makes an attempt at a formal definition for a

weird machine, Dullien [86] addresses the problem of formalising the term weird machine,

the relationship between exploitation and weird machines, and introduces the concept of

provable exploitability. Dullien argues that it is possible to model a program or system

using a so-called Intended Finite-State Machine (IFSM) and in doing so, view a piece of

software as an emulator for a specific IFSM. He then shows that it is possible to create

security games to argue about the security properties of a program or system by reasoning

about it at the level of the states and state transitions of its IFSM. Since an IFSM only

models an ideal system and is not a program that can be executed, Dullien proposes a
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mapping from states of the IFSM to states of a concrete CPU. As this mapping from

IFSM states to CPU states (and hence transitions) may not be one-to-one, the CPU’s

possible states can be thought of as: sane states – which correspond to IFSM states,

transition states – which represent the emulator transitioning between valid IFSM states,

and weird states, which fall into neither of the previous two definitions. If the emulator

for a program can somehow be forced to transition to a weird state by program input,

then a new computational device, or weird machine can be realised. This weird machine

can then be programmed using instructions which are formed as result of the IFSM and

the emulator.

3.4 Malware Detection

As well as being seen as intentional program vulnerabilities, backdoors can be viewed

as a form of trigger-based malware [47]. Malware has traditionally been detected us-

ing signature-based approaches. These signatures are often derived from a program’s

instruction sequences [157], or based on so-called n-grams [158] – which are contiguous

sequences of features, such as API calls. While these signatures are generally scalable and

as a result can be used for large-scale analysis, they tend not to be resistant to binary

modifications [141], such as obfuscation or recompilation. Approaches for state-of-the-art

malware detection use similar techniques to those for large-scale bug-search (i.e., those

described in §3.1.3), for instance, signature-based approaches combined with machine

learning to achieve automated, scalable classification and clustering, and graph-based ap-

proaches combined with similarity metrics. A key difference between traditional malware

and backdoors is how they compromise a system. A backdoor is almost always (intention-

ally) embedded within an otherwise legitimate program binary, whereas (binary-based)

malware tends to manifest as a dedicated program or as a modification to third-party

software (without the original developer’s intent). Moreover, by definition, backdoors are
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activated by a trigger condition through interaction from a third-party, whereas tradi-

tional malware is typically always active.

Schultz et al. [159] were the first to apply machine learning to the problem of mal-

ware detection. They utilise features derived from both program code and data, such

as properties related to shared library usage, for example, the number of function calls

to imported functions and the number of functions in each imported library called, and

string and byte-sequence usage. Rieck et al. [151] propose a framework for automated

analysis of malware behaviours using machine learning. They use a combination of cluster-

ing to identify novel classes of malware that exhibit similar behaviour, and classification

to associate malware to those classes. To obtain the behavioural properties of a given

malware sample, they perform dynamic analysis to monitor the system calls it uses, and

the arguments passed to those calls; they then use those properties to construct feature

vectors. Using a combination of standard classification and clustering algorithms, they

automatically generate behavioural classes and map malware to those classes.

Ye et al. [185] utilise a so-called hierarchical associative classifier (HAC) (see, e.g.,

[129]) to detect malware. The authors use API features to train their classifier; they show

that their classifier achieves a precision of 96.2405% and recall of 36.2606% on binaries it

assigns a “confident” label (i.e., the classifier is confident the binary contains malware, and

it does actually contain malware), and 61.5% precision and 34.8442% recall on binaries it

assigns a “candidate” label (i.e., it may contain malware, and actually contains malware).

Bayer et al. [54] use clustering to group malware samples whose behaviour is similar. They

perform dynamic analysis to first obtain execution traces, then using those traces, generate

so-called behavioural profiles which characterise the activity of the malware abstractly.

Their machine learning approach uses hierarchical clustering (see, e.g., [129]) to group

malware which have similar behavioural profiles.

Nataraj et al. [136] use image processing techniques to classify malware. They observe
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that when visualised as greyscale images, malware of the same family share common

visual properties. They use standard clustering techniques (k -nearest neighbours, with

a Euclidean distance metric) to construct a set of clusters for known malware families,

based on the properties of the greyscale image representations of the malware. On a large

dataset of malware from known malware families, the authors achieve a classification

accuracy of 97.18%. Shabtai et al. [163] propose using opcode byte n-gram patterns

as features for classifying (and hence detection) of previously unknown malicious code.

Moskovitch et al. [134] and Kolter et al. [120] employ related approaches, both with a

differing feature representation – using just n-grams as opposed to n-gram patterns.

Tian et al. [177] perform automated malware classification using the printable strings

extracted from a number of malware families. They construct a classifier by combining the

outputs of a number of standard classification algorithms (to form a meta-classifier). This

classifier is trained using only string data extracted from the binaries of their training set.

The resultant classifier is shown to be effective: achieving an accuracy of 97% from 5-fold

cross-validation. Tian et al. [178] use function length information as features to address

the same classification problem; they find their classifier performs with an accuracy of

87%. Islam et al. [109] use a combination of strings and function information (function

lengths) to form features; as in [178] and [177], they perform classification of malware

families; they find the combination of both strings and function lengths improves the

classification accuracy over both of those approaches, yielding a classifier with an accuracy

of 98.8%. Sami et al. [155] train a classifier to distinguish between malicious and benign

binaries. Their classifier is trained using API call sets as features, where an API call set

is essentially the set of all API functions that are called by a binary. To reduce the size

(and hence dimensionality) of these sets, feature selection is applied to keep only those

API calls that are most discriminating. On evaluation, they find their classifier achieves

a detection rate of 99.7%.
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Aside from machine learning, other approaches have been proposed for malware detec-

tion and identification. For instance, Park et al. [143] use maximal common sub-graph de-

tection (see, e.g., [57]) to perform malware classification. They use a so-called behavioural

graph to represent a binary, which is obtained by executing the binary and observing the

system calls it makes, as well as the arguments passed to those calls. Within the graphs,

nodes represent system calls, and edges represent dependence relations between the ar-

guments of those calls, for example, if two nodes, n1 and n2 are connected, then the

arguments passed to n2 have a dependence upon the arguments passed to n1. To com-

pute the similarity between two malware samples, they compute the maximal common

sub-graph from the behavioural graph representations and use a distance metric (as a

function of the maximal common sub-graph) to quantify the similarity between the two

samples. Hu et al. [105] propose using function-call graphs to perform malware classi-

fication. They devise a graph similarity metric based upon graph-edit distance, which

they approximate using graph matching implemented as a modification of the Hungarian

algorithm (see, e.g., [124]). They use a multi-level index to facilitate searching for similar

malware over a large dataset.

Fredrikson et al. [93] propose a means to distinguish between classes of programs and

apply it to malware behaviours. They derive so-called optimally discriminative specifica-

tions – which are constructed by extracting what the authors coin significant malicious

behaviours from known malware. These behaviours are mined from sets of (pre-labelled)

similar binaries (malware families). Specifications are essentially collections of behaviours

with a characteristic function that defines one or more subsets of the binaries used to

extract those behaviours. An optimal specification is one that discriminates the mali-

cious and benign binaries of a set of samples with respect to a given threshold. Their

tool, Holmes, which implements a detection scheme based upon optimally discriminative

specifications, achieves a 86% detection rate against new, previously unknown malware,
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with no false positives.

3.5 Backdoor Detection

While techniques proposed for detecting both malware and vulnerabilities are strongly

related to those for detecting backdoors, methods for specifically addressing the problem

of backdoor detection are scarce in the academic literature. Zhang et al. [190] explore

the notion of backdoor detection and give a first informal definition of the term backdoor.

They define a backdoor as “a mechanism surreptitiously introduced into a computer sys-

tem to facilitate unauthorised access to the system”. This definition was made in their

paper entitled Detecting Backdoors, published in 2000, and while the definition they pro-

vide is largely agreeable with current usage of the term backdoor, they consider backdoors

only from a network security perspective. They propose an algorithm for detecting so-

called interactive backdoors, which model a scenario in which an attacker interacts with

a backdoor through inputting keystrokes. Their algorithm uses network monitoring as a

basis for detection and analyses three types of network traffic characteristics: direction-

ality, packet sizes and packet interval times – where directionality refers to the initiator

of a network connection. Their algorithm attempts to detect keystrokes – which the au-

thors argue are symptomatic of backdoor behaviour under certain circumstances. The

authors further propose a number of protocol-specific algorithms for detecting backdoors

in network traffic for a number of common services, such as, Telnet, SSH, Rlogin, and

FTP.

Wysopal et al. [183] provide a taxonomy for backdoors, in which they detail three

major types of backdoor. The first type, they call system backdoors, which involve ei-

ther a single dedicated process which serves to compromise a system, e.g., a rootkit, or

an intentional misconfiguration of a legitimate service. The second type are so-called

cryptographic backdoors, which compromise cryptographic primitives through deliberate
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selection of weak parameters or bad sources of randomness. The final class of backdoor

they describe are application backdoors, which they state are versions of otherwise le-

gitimate software modified to bypass security mechanisms under certain conditions. The

authors provide a number of source-code oriented detection strategies focusing on specific

types of application backdoors, which fall into the following categories: special credentials,

hidden functionality, unintended network activity, and modification of security-critical pa-

rameters. To detect the use of special credentials (i.e., hard-coded credential backdoors),

the authors propose searching for static variables that look like usernames or passwords,

for instance, variables that contain strings that are only made up of characters from the

printable ASCII character set. To detect hidden functionality, they propose identifying

static variables that look like application commands. For unintended network activ-

ity backdoors, the authors suggest identifying common network API usage, specifically

where hard-coded IP addresses are used and analysing code-flows that include that usage

for possible information leaks, i.e., where information is sent over a network connection

that should not be. To detect backdoors that manipulate security-critical parameters,

they propose first identifying variables used to store such parameters and then suggest

performing a systematic assessment of their usage. The detection methods the authors

propose, while generally applicable for use by a human analyst reviewing source code,

are high-level and cannot be automated easily. Moreover, they require expert domain

knowledge and human intuition to perform effectively, e.g., to identify strings that look

like usernames. While machine learning can certainly attempt to mimic such intuition

(e.g., StringFighter [156]), the results of such approaches are neither well studied, nor

considered by the authors.

Schuster et al. [160] address the problem of backdoor detection in binaries through the

use of dynamic analysis. They define a backdoor as a “hidden, undocumented, and un-

wanted program or program modification/manipulation that on certain triggers bypasses
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security mechanisms or performs unwanted/undocumented malicious actions”. Their de-

tection method addresses two classes of backdoor: flawed authentication routines (e.g.,

those that contain hard-coded credentials) and hidden commands and services. They

restrict their detection approach to a subset of programs, specifically server applications,

where the protocols handled by those applications are known and can be modelled prior

to analysis. This limits their approach to binaries that perform relatively domain-specific

functionality and handle only known protocols. To detect backdoors, they propose an

algorithm, A-WEASEL, which learns a decision tree that models the possible execution

paths a program takes in response to particular inputs. This algorithm works by inter-

acting with a binary using a model of the protocol it implements, recording the execution

traces of multiple, differing protocol runs, and using those traces to construct call graphs.

These call graphs are combined to form a so-called combined call graph, which is, in turn,

used to construct a decision tree. The authors use heuristics to identify crucial decisions

within a decision tree (i.e., those that handle authentication), these decisions are used

to locate suspicious program paths, which are subsequently checked for backdoor-like

properties using standard static and dynamic analysis approaches. The prototype imple-

mentation of their approach is able to identify a number of “artificial” and previously

identified backdoors in programs for multiple device architectures.

Firmalice [166] is a tool developed using the angr framework [167] to detect authenti-

cation bypass vulnerabilities (backdoors) within embedded device firmware. The authors

propose a model for a class of backdoors they coin authentication bypass vulnerabili-

ties. They note that such backdoors tend to manifest in three distinct ways: intention-

ally hard-coded credentials, intentionally hidden authentication interfaces and unintended

bugs (e.g., shell-injection bugs through incorrect input handling). Firmalice uses the no-

tion of a security policy, which is a definition of a state that a program can reach that is

considered privileged. An authentication bypass vulnerability exists when it is possible
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to reach such a state without performing proper authentication. Firmalice uses symbolic

execution aided by various simplification techniques (for efficiency) to attempt to prove

it is possible to reach a privileged state – specified by a given security policy – from a

supplied input state using constraint satisfaction. This proof will be a concrete program

input, that satisfies all of the conditions required in order to reach the privileged state.

In the case of a hard-coded credential backdoor, this would mean finding concrete values

for the hard-coded credentials. To evaluate Firmalice, the authors use three embedded

device firmware images known to contain backdoors; in all cases, Firmalice is able to find

inputs that trigger those backdoors. It should be noted that Firmalice requires some level

of manual intervention to perform its analysis: namely specifying the security policy –

which can potentially require a degree of manual reverse engineering to achieve.

Papp et al. [142] propose techniques for semi-automated detection of trigger-based

behaviours (i.e., backdoor-like behaviours) in source code. They use concolic execution to

identify code paths that can reach (potentially) malicious functionality, which they define

as calls to system, exec and send. The prototype implementation of their approach is

able to detect three out of the five backdoors they evaluate against.

BinPro [131] is a tool that attempts to reduce the manual effort required to perform

binary audits of security-critical code. It operates on applications where both a binary

implementation and its source code are available. The primary objective of BinPro is to

identify where backdoors have been inserted into applications, assuming they do not exist

within the available source code for the applications. BinPro uses graph-based matching

to identify additional function call, and control-flow graph features present in a binary

application, that are not present within its source code. BinPro is able to correctly match

74% of functions over a test set of 10 open source applications, which the authors claim

reduces the effort of binary auditing by an average of 25% in relation to the number of

functions to manually analyse.
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3.6 Chapter Summary

In this chapter, we have explored works from both academia and the broader Information

Security community, directly related to the topic of this thesis, i.e., backdoor detection,

and related fields: program analysis, vulnerability discovery, and malware detection. In

doing so, we have found the need for a clear, rigorous definition of the term backdoor, as

well as highlighted the distinct lack of methodologies for detecting backdoors. To serve

as inspiration for developing new detection techniques, we have surveyed the state-of-the-

art in the related fields of bug search and malware detection, which we find to largely

use either heuristics or machine learning as the basis for large-scale analyses, or sym-

bolic execution for more targeted, small-scale analyses. Finally, we have reviewed the

fundamental difficulties in binary program analysis, as well as examined the implemen-

tations of complex, esoteric backdoors, both of which serve to expose the limitations of

practical approaches for backdoor detection and the potential trade-offs required for their

implementation.
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In this chapter, we present rigorous definitions for the terms backdoor and backdoor

detection. We provide a framework for decomposing backdoors into their component

parts, which allows us to model them concisely, and aids in both their identification

and detection. Moreover, we provide definitions for intentional, deniable and accidental

backdoors, and provide a means for reasoning about their implementations. Further, in

order to demonstrate our framework and definitions, we provide an analysis of a number

of real-world backdoors and a more complex backdoor from the literature. Finally, we

75
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show how our framework can be used as both a premise for developing backdoor detection

methodologies, and to analyse existing approaches.

4.1 Motivation

Although the term backdoor is generally understood as something that intentionally com-

promises a platform, there has been little to no effort to give a definition that is more

rigorous. To give such a definition is difficult, as backdoors can take many forms, and can

compromise a platform by almost any means (see, e.g., [183]); for example, a hardware

component, a dedicated program or a malicious program fragment. This lack of a concrete

definition prohibits reasoning about backdoors in a generalised way that is a premise to

developing methods to detect them. Further hampering that reasoning – especially in the

case of backdoors of a more complex, or esoteric nature – is the sheer lack of real-world

samples. Documented real-world backdoors are generally simplistic, where their trigger

conditions rely upon a user inputting certain static data: the most obvious example be-

ing hard-coded credentials. These have been studied in the literature with various tools

providing solutions relying on varying degrees of user interaction [166, 174].

4.2 Contributions

The work presented in this chapter, provides first and foremost, a much needed rigorous

definition of the term backdoor: which we view as an intentional construct inserted into

a system, known to the system’s implementer, unknown to its end-user, that serves to

compromise its perceived security. We propose a framework to decompose and compo-

nentise the abstract notion of such a backdoor, which serves as a means to both identify

backdoor-like constructs, and reason about their detection.

Many backdoors found in the real-world fall into a grey area as to whom is accountable

for their presence; to address this, we define the notion of deniability. We model deniabil-



77 4.2. Contributions

ity by considering different views of a system: that of the implementer, the actual system,

and the end-user; this allows us to – depending on where backdoor-like functionality has

been introduced – reason about if that functionality is a deniable backdoor, accidental

vulnerability, or intentional backdoor. In many cases, attempting to model this inten-

tion, or the lack thereof, is something that is social or political; thus, we do not address

such cases in this work. Instead, we focus on the technical aspects of a backdoor-like

functionality.

We show that under our definitions, many backdoors publicly identified are not deni-

able and thus, their manufacturers should be held accountable for their presence. Aside

from manual analysis, little work has been performed to address the detection of back-

doors. We perform a study of both academic and real-world backdoors and consider

existing methods that can be used to locate backdoor components, as well as how those

methods can be improved. To summarise, the contributions of this work are as follows:

1. We provide a rigorous definition for the term backdoor and the process of backdoor

detection.

2. We provide a framework for decomposition of backdoor-like functionality, which

serves as a basis for identifying such constructs, and reasoning about their detection.

3. We express the notion of deniable backdoors by considering different views of a

system: the developer’s perspective, the actual system, the end-user, and a user

analysing the system.

4. We show examples of both academic and real-world backdoors expressed in terms

of our definitions, and reason about their deniability and detectability.

5. We demonstrate how our framework can be used to reason about backdoor detection

methodologies, which we use to show that current state-of-the-art tools do not
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consider a complete model of what a backdoor is, and as a result, we are able to

identify limitations in their respective approaches.

4.3 Nomenclature & Preliminaries

In the remainder of this chapter, we reference terms and initialisms described in this

section. A platform represents the highest level of abstraction of a device that a given

backdoor targets. We define a system, which we say is the highest level of abstraction

required to model a given backdoor, within a platform. More specifically, a system – for

the purposes of our discussion – is the implementation target of a given backdoor. Since a

backdoor can be implemented at any level of abstraction of the platform it is designed to

compromise – for example, as a dedicated program, a hardware component, or embedded

as part of another program – we attempt to abstract away from such details. To do this,

we instead focus on an abstract system, which we model as a finite state machine (FSM).

When considering a backdoor, there are two perspectives to consider a system from:

that of the entity that implements a backdoor, and that of the end-user – which could,

for example, be a general consumer, or a security consultant analysing the platform. To

model this situation, we consider four versions of the FSM; for any given system, the

Developer FSM (DFSM) refers to the developer’s view of the system, the Actual FSM

(AFSM) refers to the FSM that models a real manifestation of the system, i.e., a program,

the Expected FSM (EFSM) refers to the end-user’s expectations of the system, and finally,

the Reverse-engineered FSM (RFSM), represents a refinement of the EFSM obtained by

reverse-engineering the actual system.

Each state of the FSM describing a system can be viewed as an abstraction of a

particular functionality – which, in turn, can be modelled using a FSM. Thus, we view an

entire system as a collection of sub-systems, which can be visualised in a layered manner

– with each layer representing a view of a part of the system at an increasing level detail,
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Figure 4.1: Multi-layered system FSM.

as in Figure 4.1.

As a concrete example, if, for instance, a given backdoor compromised a router, then

we would refer to the router as the platform. If the backdoor was implemented in software,

as a dedicated program, we would then view the highest level of abstraction, referred to as

the system, as the interactions between the processes of the operating system, modelled

as a FSM. Each individual running program, or process, would, in turn, be modelled in

further detail by arbitrary levels of FSMs.

4.3.1 Analysis and Formalisation of FSMs

We specify a FSM as a quintuple: θ = (S, i, F,Σ, δ), where: S is the set of its states, i is its

initial state, F is the set of its final states, Σ is the set of its state transition conditions,

e.g., conditional statements that when satisfied cause transitions, and δ : S × Σ → S

represents its state transitions, by means of a transition labelling function.

Inspired by the approach taken by Dullien [86], we view the implemented, or real

system modelled by a FSM as an emulator for the actual FSM (AFSM) of the system.

Thus, when the user’s EFSM and the AFSM are not equivalent, e.g., the user assumes

there is no backdoor present, when there is, specific interactions with the real system will

yield unexpected behaviour. How this unexpected behaviour manifests is what determines

if that unexpected behaviour means that the system contains a backdoor. Different users

of the system will assume different EFSMs. In order to analyse a system, a program

analyst, for example, will derive a RFSM – which, for notational ease, we refer to as
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θR – by reverse-engineering the real system; they do this by making perceptions and

observations of its concrete implementation, i.e., the emulator for θA. What the analyst

will observe is a set of states and state transitions, which are a subset of all those possible

within the platform, e.g., CPU states. To analyse these states, and hence, derive θR,

the analyst will require a means of mapping concrete states and state transitions of the

platform to the level of abstraction modelled by the states and state transitions of their

FSM. To perform analysis, we assume that an analyst has the following capabilities:

1. They have access to the emulator for the actual FSM (θA) – in the case of software,

this would be the program binary.

2. They are able to perform static analysis upon the emulator, i.e., using a tool such

as IDA Pro, and hence, perceive a set of system states and state transitions between

those states of the real system.

3. They are able to perform dynamic analysis of the system, i.e., with a debugger, and

hence, observe a set of system states and state transitions of the real system.

The perceptions and observations of the analyst, along with a means to map concrete

states and transitions to abstract FSM states and transitions, allows them to construct a

RFSM (θR) from the emulator for a given AFSM.

4.3.2 Backdoor Definition

The implementation strategies of backdoor implementers can vary widely; therefore, we

consider the notion of an abstract backdoor, which we then decompose into component

parts. In order to do this, we attempt to answer a number of questions: what is it that

makes a collection of functionalities, when interacting together, manifest as a backdoor?

What abstract component parts can be found in all such backdoors? To what extent do

we need to abstract to identify all such components?



81 4.3. Nomenclature & Preliminaries

A distinguishing feature of all backdoors is that they must be triggered. Thus, a

pivotal component of any backdoor is its trigger mechanism. However, this trigger mech-

anism alone does not constitute a backdoor: what causes it to become active? Another

component is needed to account for the satisfaction of the trigger condition: i.e., a type

of input source. Upon trigger activation an eventual system state is reached that can be

considered the backdoor-activated state, i.e., a privileged state. To reach this final state,

an intermediate component that facilitates the transition from the normal system state

upon satisfaction of the backdoor trigger to the backdoor-activated state is required: we

refer to this as the backdoor payload. By this reasoning, there are four components (and

the transitions between them) required to capture the notion of a backdoor. Thus, we

define a backdoor as:

Definition 4.1. Backdoor An intentional construct contained within a system that serves

to compromise its expected security by facilitating access to otherwise privileged func-

tionality or information. Its implementation is identifiable by its decomposition into four

components: input source, trigger, payload, and privileged state, and the intention of that

implementation is reflected in its presence within the DFSM and AFSM, but not the

EFSM of the system containing it.

4.3.3 Backdoor Detection

Using Definition 4.1 as a basis, a backdoor can be modelled as two related FSMs: θtrigger,

which represents the trigger without a state transition to the payload, and θpayload, which

represents the payload and Fpayload, the set of possible privileged states. Thus, we can

define backdoor detection as:

Definition 4.2. Backdoor Detection A backdoor is detected by obtaining:

θR = (SR, iR, FR,ΣR, δR)



4.4. A Framework for Modelling Backdoors 82

Where, within θR, the states and state transitions of both the trigger and payload must

exist:

Σtrigger ∪ Σpayload ⊆ ΣR

∀s ∈ Strigger,∀σ ∈ Σtrigger. δtrigger(s, σ) ̸= ⊥ =⇒ δR(s, σ) = δtrigger(s, σ)

∀s ∈ Spayload, ∀σ ∈ Σpayload. δpayload(s, σ) ̸= ⊥ =⇒ δR(s, σ) = δpayload(s, σ)

The privileged states reachable as a result of the payload are either final states of θR, or

states that can be transitioned from to some state of θR:

Strigger ∪ Spayload ⊆ SR

∀f ∈ Fpayload. f ∈ FR ∨ (f /∈ FR =⇒ ∃σ ∈ ΣR. δR(f, σ) ∈ SR)

The payload must be reachable from the trigger, and there must exist a transition to the

trigger within θR:

∀f ∈ Ftrigger. ∃σ ∈ Σtrigger. δR(f, σ) = ipayload

∃s ∈ SR, ∃σ ∈ ΣR. δR(s, σ) = itrigger

4.4 A Framework for Modelling Backdoors

In this section, we detail a framework for decomposing a backdoor into the four compo-

nents defined in §4.3.2; we exhaustively enumerate the types of these components, which

allows us to both identify and reason about them.

In addition to locating a construct consisting of an input source, trigger, payload, and

privileged state, to detect a backdoor, an analyst must demonstrate that the construct

would be part of the DFSM of the system. For open-source software, this could be done
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by analysing the source code version control logs, or in closed-source software, analysing

the differences between software versions. In other cases, where such analysis is not

possible, the following framework can serve as a basis for reasoning about how a backdoor’s

components can indicate an implementer’s intent.

In the proceeding framework, we refer to the RFSM of an end-user that has analysed

a particular system. Initially, that user will expect functionality that can be modelled by

one FSM (their EFSM), and through their analysis, they will learn, or derive another FSM

(RFSM) that matches what they have learnt about the system. Therefore, to discover

a backdoor, the user will perform a process of refinement on their original EFSM (pre-

analysis), such that their RFSM (post-analysis) will contain a backdoor if there is one

present in the AFSM, and they are able to identify it.

From the process of refinement, new states and state transitions will be added to the

RFSM. We divide these states and state transitions into two categories: those that are

explicit, which we say are discovered (and always exist within the AFSM) and those that

are not explicit, which we say are created (and may not exist within the AFSM). To serve

this distinction with an example, suppose we have a RFSM that models a program. The

explicit states and state transitions that are added to it through analysis are those that

represent basic blocks and branches that are explicitly part of the program’s code (and

will always be part of the DFSM and AFSM). Those that are added that are not explicit

are in a sense weird states and state transitions, which might, for example, be the states

representing some shellcode.

4.4.1 Input Source

If we model the satisfaction of a backdoor trigger as a function – trigger decision – as

in the state machine diagram in Figure 4.2, then we can view it as a function that takes

at least one parameter (implicit or otherwise) – an input source – which is used to decide
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which state transition that is made as a result of executing that function.

trigger decision(input source, ...

Activated Not activated

Figure 4.2: Idealised Backdoor Trigger.

The value yielded by the input source may be derived from any number of inputs

to the FSM: it could be a string input by an attacker wishing to activate the backdoor

trigger, or it could be the value of the system clock such that during a specific time

period the backdoor trigger becomes active. For this reason, we choose to abstract away

from the exact implementation details, and use the term “input source” to represent this

component of the backdoor. Note, that the input source is not the value that causes the

activation of the backdoor trigger, but rather describes the origin of that input: e.g., a

network socket, the standard input, the system clock, and so on.

4.4.2 Trigger Mechanism

The backdoor trigger, under the correct conditions, will cause the execution of the back-

door payload, which will subsequently elevate the privileges of the attacker. We model the

backdoor trigger as a boolean function where its positive outcome, i.e., when it outputs

true, will cause a state transition to the backdoor payload. The way the FSM transitions

to the payload as a result of the satisfaction of the trigger conditions can be modelled

exhaustively with two cases:

1. The state transition is explicit, hence, will always exist within the backdoor im-

plementer’s DFSM. The backdoor trigger is added to the RFSM by adding the

explicit states and transitions related to satisfying the backdoor trigger conditions,

and adding one or more transitions which transition to the payload, where those

transitions are discovered (not newly created) as part of the analysis.
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_Bool vulnerable_auth_check( \

const char *user, const char *pass) {

char buf[80], hash[32];

strcpy(buf, user); strcat(buf, pass);

create_user_pass_hash(hash, buf);

return check_valid_hash(hash);

}

vulnerable auth check(...

Authenticated Not Authenticated

True FalsePayload

Buffer Overflow

Figure 4.3: Bug-based backdoor trigger.

2. The state transition is not explicit. The trigger is added to the RFSM by adding

explicit states and state transitions related to satisfying the backdoor trigger con-

ditions, and by adding one or more state transitions that transition to the payload,

where those transitions are newly created as part of the analysis, i.e., they are not

explicit.

To visualise these cases, we use concrete examples in which we use a system that is a

single program, where the backdoor is embedded as part of the program.

In the first case, we view a trigger that is obvious and explicit, where the backdoor is

encoded within a single function of the program. This case is shown in Figure 4.2. The

backdoor trigger is comprised of the single state required to satisfy the backdoor trigger

conditions, i.e., the one labelled with trigger decision(...), and the state transition

to the Activated state. In a more realistic scenario, the backdoor trigger mechanism

may require satisfaction of multiple branch conditions and/or execution of multiple basic

blocks and might be obfuscated. Irrespective of these implementation details, the core

concept is the same: the collection of checks can be viewed as a single function, whose

outcome is used to decide if the backdoor payload is transitioned to and hence, executed

or not, where the transition – a CFG edge in this example – is explicitly part of the FSM.

While the first case considers conditions that are satisfied within a valid function CFG,

and a transition to the payload which is contained entirely within that same valid CFG,

and thus, constitutes normal control-flow, the second case of backdoor trigger manifests

as abnormal control-flow. Within a program, we can think of such a construct as akin to
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1 strcmp(username, "bugdoor")

2vulnerable password check(... safe user auth(username, ...

True False

Authenticated Not Authenticated

3Payload

Buffer Overflow

Figure 4.4: Hybrid bug-based backdoor trigger.

a program bug that allows control-flow hijacking. One can conjecture a simple case for

this being a buffer overflow vulnerability, that when exploited correctly, causes a program

to transition to a backdoor payload, shown in Figure 4.3.

Alongside these basic cases, a more complex example of a backdoor trigger is one

that relies both on explicit checks and a bug, as visualised in Figure 4.4. In this case, a

hard-coded credential check against a specific username (bugdoor) is used to guard access

to a vulnerable password check (vulnerable password check). A username other than

bugdoor will cause the standard authentication routine (safe user auth) to be executed,

and only a password with a long enough length (and specific content) will lead to the

execution of the backdoor payload. In this example, the backdoor trigger is comprised of

the explicit states 1 and 2, and the non-explicit state transition between states 2 and 3,

i.e., the payload state.

Note, that to make the case that all vulnerabilities are backdoor trigger mechanisms

is an oversimplification, and obviously false claim, as such a simplification does not dif-

ferentiate between accidental and intentional program bugs. We discuss the implications

of bug-based backdoors in §4.5.

4.4.3 Payload

A backdoor payload can be viewed as the solution to a puzzle: i.e., how to reach a

privileged state from successfully satisfying the conditions of a backdoor trigger. In our
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model, we represent this by the state transition taken in order to reach a privileged state,

and any additional states and state transitions that perform prerequisite computation

following activation of the backdoor trigger. In practice, a payload component can take

many forms; however, we can exhaustively categorise all types of payload by how they are

modelled as part of a RFSM, and how they are transitioned to:

1. The transition to the payload is explicit, and does not permit the creation of new

states and state transitions (see Figure 4.5). The payload is added to the RFSM by

adding explicit states and transitions required to reach a privileged state, where those

states and transitions are discovered by analysis (explicit). They will be contained

in the backdoor implementer’s DFSM.

2. The transition to the payload is explicit, but state(s) reachable due to this transition

permit the creation of new states and transitions, e.g., a system that contains an

intentional interpreter which can be accessed via a backdoor (see Figure 4.6). The

payload is added to the RFSM by adding discovered (explicit) states and transitions

– which exist in the backdoor implementer’s DFSM – from which both newly created

(non-explicit) and discovered (explicit) states and transitions can be reached, which

facilitate the eventual transition to a privileged state. The non-explicit states and

transitions added will not exist within the backdoor implementer’s DFSM.

3. The transition to the payload is not explicit (bug-based), and the payload’s states

and transitions will either be explicit or non-explicit, e.g., a ROP-based construct.

The payload is added to the RFSM by adding both newly created (non-explicit)

and discovered (explicit) states and transitions, which facilitate the transition to a

privileged state. The non-explicit states and transitions added will not exist within

the backdoor implementer’s DFSM.
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4.4.3.1 Payload examples

To give concrete examples of the variants of backdoor payload, we once again demonstrate

backdoors that are implemented within programs.

/* Trigger; if active then: (1) -> (2) */

if (strcmp(user._name, "backdoor") == 0) {

/* Payload */

user._is_admin = true; // (2)

/* Transition to privileged state */

open_shell(&user); // (3) -> (4)

}

1

2

3

4

Trigger

Payload

Figure 4.5: Explicit transition to payload, where payload has explicit components.

Explicit transition to payload with explicit payload components This class of

payload (case 1 above) is inherently an intentional construct and requires no abnormal

control flow for it to be executed. An example of a backdoor with such payload is shown

in Figure 4.5. The backdoor trigger condition (state 1) is a hard-coded credential check,

which if satisfied, will transition to the backdoor payload (transition from state 1 to 2).

In the payload, the backdoor user’s permissions are first elevated (state 2), and then a

shell is opened for that user (state 3), which allows them to transition to the privileged

state (state 4).

/* Trigger; if active then: (1) -> (2) */

if (strcmp(req._path, "/BKDRLDR") == 0) {

/* Payload; req._data == payload input */

run(&req._data); // (2) -> (3)

}

1 2

Trigger

Input for Payload

3

Payload

Figure 4.6: Explicit transition to payload comprised of explicit and non-explicit compo-
nents.

Explicit transition to payload with explicit and non-explicit payload compo-

nents In this case (case 2 above), we model a backdoor that enables an attacker to
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perform computation not part of the developer’s DFSM, without being in a state that

is bug-induced. An example of such a backdoor is shown in Figure 4.6; if the backdoor

trigger is satisfied, the program will interpret and execute an input supplied by the user

of the backdoor. The trigger condition is a check to see if a user is requesting access to

a specific path (state 1), if it is, then the payload is transitioned to (state 1 to 2), where

the data sent with the request (req. data) is used as input to an interpreter (state 2, via

run). In this case, the privileged state (state 3) transitioned to is dynamically constructed

as a result of the input to the interpreter executed in state 2.

void some_function() {

char buf[80];

/* ... */

/* Backdoor activated if len(input)

causes buffer overflow */

strcpy(buf, input); // (1) -> (2)

return;

}

void other_function() {

/* ... */

/* Payload reaches via (2) -> (3) */

g_user._is_admin = true; // (3)

open_control_panel(); // (4)

}

1

3

4

2

Trigger Payload

Figure 4.7: Non-explicit transition to payload, where payload has both explicit and non-
explicit components.

Non-explicit transition to payload with explicit and non-explicit payload com-

ponents In the final case (case 3 above), we model backdoors that have a trigger mech-

anism that is bug-based, i.e., allows an attacker to perform computation not part of the

developer’s DFSM. We visualise such a case in Figure 4.7; here the trigger consists of an

intentional buffer overflow bug in some function (state 1), which if exploited – in this

case with a ROP-based payload – transitions (via 1 to 2) to the payload. The payload

consists of states 2 and 3, and the transitions from states 2 to 3, and 3 to 4. As a result

of the payload, the user is granted administrative privileges (state 3), and entered into a

(privileged) control panel via open control panel in other function (state 4).
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if (strcmp(password, "_BACKDOOR_") == 0 \

|| is_valid_password(password)) {

// Authenticated

} else {

// Not authenticated

}

1

2

strcmp(...

Authenticated

is valid password(...

Not Authenticated

Trigger

Payload

Figure 4.8: A backdoor payload composed solely of a state transition.

Single transition payloads We note there is a special case for both cases 1 and 3,

namely, where the payload is composed of only a single state transition. That is, no

additional computation is undertaken as part of the payload, rather the payload shares

its state transition with the backdoor trigger, as shown in Figure 4.8. This special case

accounts for situations where the backdoor trigger acts like a trapdoor (state 1), allowing

an attacker to bypass a (potentially) more complex check for user-authentication, and

rather provides a direct transition to a privileged state (the transition from state 1 to 2).

The form of the payload is identical for cases 1 and 3, other than the explicitness of the

state transition (the payload) between the trigger and the privileged state.

4.4.3.2 Payload obfuscation

So far, we have not considered how a backdoor implementer might hide a backdoor’s pres-

ence – other than by using a bug-based trigger mechanism. While such a trigger is simple

to implement, it offers the implementer no control over how the backdoor will eventually

be used; this control can be regained, by, for example, limiting the computational free-

dom of newly created states. In this section, we explore the means by which a backdoor

implementer can permit obfuscated payload components.

Since backdoor payloads that contain only explicit states and state transitions are

obvious and thus, intentional constructs, an obfuscated payload by nature must be imple-

mented through the use of some degree of abnormal control flow, i.e., non-explicit states

and state transitions. An example of such a payload is one derived by reusing components

of the system it is implemented within to obscure its execution, e.g., for a program, from
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static analysis methods. From an attacker’s perspective, the only way to execute such a

backdoor is either to have prior knowledge of the payload, or solve a puzzle and derive

it from the original system. Andriesse et al. [47] describe such a backdoor (examined in

further detail in §4.6), whereby its payload component is composed of multiple code frag-

ments embedded and distributed throughout a binary, which execute in sequence upon

the backdoor being triggered. Figure 4.7 shows a näıve example of such a payload.

Another example is that where a payload can be derived from attacker controlled

data. In the simplest case, this is akin to shellcode often executed as a result of the

successful exploitation of a buffer overflow vulnerability: it shares a commonality that it

does not rely upon any existing program components. In more sophisticated cases, such

a backdoor payload might take a hybrid approach: where either user-data is interpreted

by the program itself, or components of the program are used alongside the user input.

Figure 4.6 shows a simple example of such a payload. In both of these examples, the

payload components are implemented in a so-called weird machine, as defined by Oakley

and Bratus [139].

4.4.4 Privileged State

Following successful activation of the backdoor trigger and subsequent transitioning from

the associated payload, the system will enter into a privileged state. There are two possi-

bilities for this state: either it can be reached under normal system execution, or it can

only be reached through activation of the backdoor. If we consider privileged states by

how they are added to a RFSM, then one that is newly created, i.e., is non-explicit, will

not be reachable under normal system execution, meanwhile, one that is explicit, may

or may not be reachable under normal execution: for example, while the privileged state

might be explicit, the only way to reach it might be via the backdoor trigger.

In the case of a privileged state reachable through normal execution, consider the
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backdoor presented in Figure 4.8 – which models a hard-coded credential check. The

privileged state (state 2) of the backdoor is both reachable via the backdoor trigger (from

state 1), and the state labelled is valid password.

For the other case, where the privileged state is not reachable by a legitimate user, it

is essentially guarded by the activation of the backdoor. This case can further be sub-

categorised. The first variant is where the privileged state is explicit, as in Figure 4.5;

the privileged state (state 4) is only reachable through activation of the backdoor trigger

(state 1 and the transition from state 1 to state 2). In this example, the privileged state

manifests as an undocumented backdoor shell, where after entering a specific username,

an attacker is able to perform additional functionality, not otherwise possible. The other

variant is a privileged state that provides an attacker access to functionality that is not

available to a legitimate user, where that functionality does not explicitly exist within the

system – as shown in Figure 4.6. Here the privileged state (state 3) is some function of

attacker input, i.e., the result of run(&req. data).

4.5 Practical Detection & Deniability

While the previous definitions and framework focus on identifying the structure of back-

doors, backdoor detection in practice will happen through, for example, manually reverse-

engineering a program binary or observing a backdoor’s usage through suspicious system

events, such as anomalous network traffic. As is, our proposed framework oversimplifies

as it does not model intention. If we knew that a particular vulnerability was placed in-

tentionally, then there would be no question that the vulnerability was placed deliberately

to act as a backdoor. Thus, in this section we answer the question: if we have identified a

backdoor-like construct, can we distinguish it from a vulnerability, and if so, how deniable

is it?

In order to make such a distinction, recall that we can view a system from four



93 4.5. Practical Detection & Deniability

perspectives: its DFSM, AFSM, EFSM, and RFSM. If a backdoor-like construct has

been identified, then it will be present in both the emulator for the AFSM and the

RFSM. To state that the construct is a backdoor – and was placed intentionally – we

must show that it, or some part of it, was present within the DFSM. In some cases, the

intent is explicit and hard-coded in the implementation – i.e., it leaves no ambiguity.

The most obvious example of this is a hard-coded credential check which serves to bypass

standard authentication. Indeed, all cases of backdoor that transition explicitly – i.e., are

discoverable by analysis – from the satisfaction of their trigger conditions to their payload

can be considered intentional.

In the other case, where that transition is non-explicit, i.e., bug-based, various ap-

proaches can be taken. For instance, in the case of software, where version control logs

are available, it is possible to identify the exact point where a backdoor has been inserted,

as well as its author. For binary-only software, where there exist multiple versions of that

software, it is possible to identify the version the backdoor was introduced in, and reason

about its presence by asking the question was there a legitimate reason for making such

a change to the software? Further, we can consider the explicitness of the backdoor com-

ponents: for example, if a code fragment exists within a binary that does nothing more

than facilitate privilege escalation, and it is unreachable by normal program control-flow,

then there is an indication of intent. A similar case can be made if the satisfaction of the

trigger conditions rely on checks discoverable by analysis as well as a bug. Unfortunately,

all of these approaches have non-technical aspects and rely on human intuition – thus, do

not provide a concrete proof of intent. We are therefore left with three possible ways to

classify backdoor-like constructs:

Definition 4.3. Intentional backdoor Those constructs that can be unambiguously

identified as backdoors: the transition from their trigger satisfaction to their payload

is explicit. Will be present in the DFSM, AFSM, and if found, the RFSM, but not the
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EFSM.

Definition 4.4. Deniable backdoor Those constructs that fall into a grey area, where

the transition from their trigger satisfaction to their payload is non-explicit, but from a

non-technical perspective can be argued to be intentional. Will be present in the AFSM,

if found, the RFSM, but not the EFSM; we cannot definitively tell if it is in the DFSM.

Definition 4.5. Accidental vulnerability Those constructs where there is no evidence

– technical, or otherwise – to suggest any intent, and the transition from their trigger

satisfaction to their payload is non-explicit. Will be present in the AFSM, and if found,

the RFSM, but not the DFSM or EFSM.

From a purely technical perspective, a deniable backdoor will be indistinguishable

from an accidental vulnerability. Consider a minimal example – a simple buffer overflow

vulnerability and its corresponding exploit. If this vulnerability was deliberately placed,

then it is a backdoor; otherwise, it is just a vulnerability coupled with an exploit. As

we do not know anything about the implementer’s intention, we are unable to discern

between the two. Thus, a vulnerability can be seen as an unintentional way to add new

state transitions or states to a system’s FSM, while an exploit is a set of states and state

transitions, such that when combined with a vulnerability within a given FSM, provides

a means to compromise the believed security of the system modelled by that FSM. In

contrast to backdoors and vulnerabilities, a construct providing standard privileged access

will be intentional and manifest within the DFSM, AFSM, EFSM, and RFSM of a system.

4.6 Discussion & Case-studies

In order to demonstrate our framework, we provide a number of case studies. We show

examples from both the literature, as well as real-world backdoors, which have been

detected manually. For each backdoor, we reason about if and why its implementation
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ngx_int_t ngx_http_parse_header_line(/* ... */) {

u_char badc; /* last bad character */

ngx_uint_t hash; /* hash of header, same size as pointer */

/* ... */

}

void ngx_http_finalize_request(ngx_http_request_t *r, ngx_int_t rc) {

uint8_t have_err; /* overlaps badc */

void (*err_handler)(ngx_http_request_t *r); /* overlaps hash */

/* ... */

if(rc == NGX_HTTP_BAD_REQUEST && have_err == 1 && err_handler) {

err_handler(r); /* points to hidden code, set by trigger */

}

}

void ngx_http_process_request_headers(/* ... */) {

rc = ngx_http_parse_header_line(/* ... */);

/* ... */

ngx_http_finalize_request(r, NGX_HTTP_BAD_REQUEST); /* bad header */

}

Figure 4.9: Source-code listing for Nginx backdoor trigger.

can be considered deniable in respect to our definitions, and analyse it by performing a

complete decomposition of its implementation using our framework. Finally, we provide

a discussion of how our framework can be used to reason about methods for detecting

backdoors.

Table 4.1 shows eleven real-world backdoors, each decomposed using our framework.

As each backdoor can be modelled with explicit states and state transitions, by our

definitions, none are not deniable. Thus, their implementers should be held accountable.

The remainder of this section provides three in-depth case-studies of backdoors of varying

complexity.

Nginx Bug-Based Backdoor Andriesse and Bos [47] describe a general method for

embedding a backdoor within a program binary. Their technique utilises a backdoor

trigger based upon an intentional program bug combined with a hard-coded payload

composed of intentionally misaligned instruction sequence fragments. Their payload is, in

a sense, obfuscated, yet fixed; its implementation exploits the nature of the x86 instruction

set, where byte-sequences that represent instructions can be interpreted differently if they

are accessed at different alignments, or offsets.
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The authors demonstrate their approach by modifying the popular web-server, Nginx,

and embedding a remotely exploitable backdoor. In their implementation, a would-be

attacker provides a crafted input, which serves to satisfy the backdoor’s trigger conditions;

this input is provided as a malformed HTTP packet – its input source is thus, a network

socket. Figure 4.9 provides a code listing adapted from [47] which contains the backdoor

trigger conditions. Those conditions are: have err == 1, and err handler != NULL,

which are set as a result of the use of uninitialised variables have err and err handler

in the ngx http finalize request function, which take the values of badc and hash

in ngx http parse header line. The bug manifests due to the fact the two functions’

stack frames overlap between their invocations. The intended payload states are meant to

be those embedded as weird states, however additional states are possible, for example,

if an attacker provides a different input packet to that expected by the implementers.

The privileged state depends on the backdoor payload. We visualise the backdoor in

Figure 4.10; the trigger is captured by state 1 and the non-explicit, bug-based transition

to state 2; the payload consists of state 2 and the transition between state 2 and 3; while

state 3 is the privileged state.

ngx http parse header line(...)

ngx http finalize request(...)

1

2

3

have err == 1 && err handler != NULL

Figure 4.10: Multi-layered FSM for Nginx backdoor.

From a technical standpoint, the backdoor is deniable, i.e., by definition 4.4 in §4.5;

this is due to the backdoor trigger transition being bug-based, whilst the backdoor pay-

load, if discovered, is arguably intentional. The componentisation using our framework

allows us to visualise a complex backdoor succinctly, which would otherwise be buried
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across multiple functions in thousands of lines of source code. Further, its componenti-

sation allows us to reason about how such a backdoor can be detected: for example, we

could attempt to detect its bug-based trigger condition using symbolic execution; alter-

natively, we could heuristically attempt to identify its payload by scanning for misaligned

instruction sequences that branch to other instruction sequences of the same kind, where

the combination of those sequences would serve to elevate an attacker’s privileges.

3S Vision N5072 Camera Backdoor The 3SVision N5072 IP camera contains a

hard-coded credential backdoor [166]. To trigger the backdoor, an attacker must use

specific credentials during HTTP authentication. In our framework, the input source,

in this case, is a network socket. The backdoor trigger condition is composed of two

checks: a comparison with the string 3sadmin (for the username), and a comparison with

the string 27988303 (for the password). If both of these checks are satisfied, then the

attacker becomes an authenticated user of the device; Figure 4.11 shows a snippet of

its disassembly. Figure 4.12 visualises the backdoor as a FSM; the backdoor trigger is

represented by states 1 and 2 and state transitions between states 1 and 2, and 2 and

3; the backdoor payload is represented by the transition between states 2 and 3 (which

manifests as a special case of an explicit payload, as described in §4.4.3), and the privileged

state is represented by state 3 (which in this case is explicit).

Figure 4.11: IDA code snippet of N5072
credential backdoor.

1strcmp( , "3sadmin")

2strcmp( , "27988303")

3

Figure 4.12: N5072 backdoor FSM.

The backdoor is not deniable; it is intentional – by definition 4.3 in §4.5 – as it can

be modelled entirely by explicit states and state transitions. In this case, the backdoor
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implementer’s intent is evident within the program binary, and they make no attempt to

hide the presence of the backdoor, and so should be held accountable.

Q-See DVR Firmware Backdoor Thomas et al. [174] identify a hard-coded creden-

tial backdoor within the firmware of a Q-See DVR device. The device receives input either

via its own virtual on-screen keyboard, or via a remotely accessible web-interface. In the

latter case, the input source is a network socket. The IDA code snippet in Figure 4.13

shows part of the hard-coded credential authentication routine; the backdoor trigger con-

sists of a comparison with the username admin, and a number of different hard-coded

passwords; each password provides an attacker with a different type of backdoor access,

not available to a legitimate user of the device. We can model each username/password

combination as a separate backdoor, each with its own payload and privileged state. Fig-

ure 4.14 models one backdoor case. The backdoor trigger is modelled by states 1 and 2,

as well as the transition between them, and the explicit transition to state 3; the payload

is modelled by state 3 and the explicit transition between state 3 and 4, as the backdoor

performs additional computation prior to reaching state 4, the privileged state.

Figure 4.13: IDA code snippet of Q-See cre-
dential backdoor.

1strcmp( , "admin")

2strcmp( , "6036huanyuan")

3

4

Figure 4.14: Q-See credential backdoor
FSM.

As in the previous case, none of the backdoors in this device are deniable: they

can all be modelled through explicit states and state transitions, and thus, the device

manufacturer should be held accountable. Stringer – the tool described in Chapter 6 –

is able to detect the backdoor by identifying the input required to satisfy the backdoor’s

trigger conditions.
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4.6.1 Backdoor Detection Methodologies

Table 4.2: Tool detection methodologies decomposed using our framework.

Tool Input source Trigger Payload Privileged State

Firmalice [166] Partial Partial No Partial
HumIDIFy [176] Partial No Partial No
Stringer [174] No Partial Partial No
Weasel [47] No Partial Partial Partial

Our framework provides not only a means to reason about backdoors, but also back-

door detection techniques. Table 4.2 shows the decomposition of the detection method-

ologies of four state-of-the-art backdoor detection tools. Each tool claims to detect a

particular subset of backdoor types. However, while these tools are all effective, none

consider a complete model of backdoors, and, as a result, are limited in their effective-

ness.

Firmalice [166] is designed to detect authentication bypass vulnerabilities. It uses

a so-called security policy to define the observable side-effects of a program being in a

privileged state. Using a specified input source, it attempts to find data provided via this

input source that satisfies the conditions – i.e., akin to a backdoor trigger – required

to observe the side-effects specified by the security policy. Firmalice has no notion of a

payload state; when entered, a payload state might leave a program in a privileged state

that is not captured by a given security policy, for instance, where the privileged state

reached by a backdoor user is different from that of a legitimate user reaches, e.g., the

Q-See DVR backdoor from the previous case-studies. Firmalice is able to detect such a

privileged state by modification of the input security policy, however, to do so will require

the same amount of manual analysis to detect the entire backdoor as it would to identify

the privileged state.

HumIDIFy [176] – discussed in detail in Chapter 5 – aims to detect if a program can

execute functionality it should never execute under normal circumstances. This might be
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the establishment of a suspicious input source, or the execution of API that is considered

anomalous, i.e., what might be part of a backdoor payload. However, since it does not

consider the notion of a trigger, it is unable to distinguish between abnormal program

behaviour that is benign – because it can only be performed by a legitimate user, and

behaviour that is genuinely anomalous – that is part of a backdoor. Again, this is due to

its approach not considering a complete model of a backdoor.

Stringer [174] – discussed in detail in Chapter 6 – attempts to detect static data used

as program input that is responsible for either enabling authentication bypass vulnera-

bilities, or used for triggering the execution of undocumented functionality. To do this,

it uses a scoring metric, which ranks static data, that when matched against, leads to

the execution of unique functionality, i.e., functionality not reachable by other program

paths. Stringer considers the partial notion of a backdoor trigger and uses heuristics for

identifying payload-like constructs. It does not consider the notion of input source, or

privileged states, and as a result of the latter is unable to meaningfully score data that

leads to states that are actually privileged higher than those that are not.

Weasel [47] detects both authentication bypass vulnerabilities and undocumented com-

mands in server-like program binaries. It works by attempting to automatically identify

so-called deciders (akin to backdoor triggers) and handlers (akin to the combination of a

backdoor payload and privileged state), which then serve to aid in the detection of back-

doors. Its approach does not fully model the notion of a backdoor; it does not consider an

input source at all, rather, the approach models a single input for the program, and data

from that source, when processed, is assumed to reveal all deciders and handlers. The

Tenda web-server backdoor in Table 4.1 acts as an undocumented command interface;

its input source is a UDP port; in this case, the backdoor uses a separate input source

from the standard input to the program, i.e., TCP port 80 or 443. Since Weasel does not

capture the notion of an input source, it is unable to detect such a backdoor – not due to
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a deficiency in its detection method, but because it does not consider a complete model

of a backdoor.

4.7 Limitations & Scope

While our formalisations attempt to capture any backdoor-like functionality, backdoors

introduced into a system by, for example, a deliberate side-channel vulnerability or

hardware-based component – that would not even be obvious to detect by analysing

an execution trace of such a backdoor being used (i.e., the backdoor occurs as a passive,

unobservable side-effect of program execution) would prove difficult to model using our

FSM-based abstraction and thus, will likely require more specialised models to handle

effectively. Similarly, “backdoors” introduced into machine-learning models (e.g., [111])

are beyond the scope of our formalisms.

4.8 Chapter Summary

In this chapter, we have provided a much-needed definition for the term backdoor, as well

as definitions for backdoor detection, deniable backdoors, and a means to discern between

intentional backdoors and accidental vulnerabilities. Furthermore, we have presented a

framework to aid in identifying backdoors based upon their structure, which additionally

serves as a means to compare existing backdoor detection approaches, and as a basis

for developing new techniques. To demonstrate the effectiveness of our approach, we

have analysed twelve different backdoors of varying complexity. In each case, we have

been able to concisely model those backdoors, which previously, might have manifested

as hundreds or thousands of assembly language instructions in a disassembler. We have

used our framework to evaluate four state-of-the-art backdoor detection approaches, and

in all cases, have shown that none consider a complete model of backdoors, and, as a

result, their potential effectiveness is limited.
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Chapter 5

Undocumented Functionality Detection in Firmware
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In this chapter, we present a methodology for detecting undocumented functionality,

specifically where it has been added to the standard software found within Linux-based

embedded device firmware. To demonstrate our approach, we present our proof-of-concept

tool, HumIDIFy, and show its effectiveness through a number of case-studies and experi-

ments.

5.1 Motivation

In recent years there have been a number of incidents where hidden, unexpected func-

tionality has been identified in both the software (firmware) [59, 122] and hardware [184]

105
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components of embedded devices. In some cases, it is referred to as a backdoor, in others,

it is considered undocumented functionality; though in both cases, such functionality can

be abused, and thus, compromise the security of a given device or network it is attached

to. When this kind of threat is present within the hardware of a device, it is not only

notoriously difficult to detect, but also requires an extremely capable adversary, such as

a nation-state actor or chip manufacturer. Conversely, inserting such functionality into

firmware is comparatively simple, and while still challenging to detect, requires a much

less powerful adversary, which provides a backdoor implementer with greater deniability.

As discussed in Chapter 2, the most prevalent classes of this functionality documented

in the real-world, are authentication bypass vulnerabilities and additional, undocumented

features added to common services, that serve to compromise a device’s security. In such

cases, when reported, manufacturers often claim these features are present by accident:

that they are so-called debugging interfaces, left over from development.

When we say a piece of software contains a backdoor or unexpected functionality, we

require context to make such a statement. That is to say, certain behaviour found in one

piece of software that we consider abnormal, we might consider standard functionality

in another. The realisation of this notion of expected functionality inevitably requires

a degree of human intervention, however, aside from this, analysis of firmware can, to a

large extent, be automated. One major challenge in developing techniques to perform

this automation is the huge diversity in the binaries contained within device firmware,

such variation – as discussed in Chapters 2 and 3 – arises from manufacturers using

different embedded architectures, operating system versions, and compiler options and

optimisation levels. A further challenge lies in the fact that a large portion of the firmware

that is readily available online is only partially complete, i.e., many are partial firmware

updates, which contain just files that will be modified, and those necessary to perform

the update process. Compounding these difficulties is the sheer quantity of firmware and



107 5.2. Contributions

devices available.

5.2 Contributions

In this work, we demonstrate an approach to automate as much of the process of finding

hidden, unexpected functionality as possible. We demonstrate our approach is capable

of overcoming the challenges presented by varying firmware implementation architectures

and compiler optimisations, and is lightweight enough to scale to analyse large amounts

of firmware in reasonable time. We implement our approach in a system, HumIDIFy,

whose operation is semi-automated, that is, it requires manual intervention in order to

confirm the abnormalities it identifies. Despite this manual intervention, compared to

manual analysis alone, we find the overall time taken to analyse firmware as a result of

using HumIDIFy is significantly reduced.

Our proposed techniques utilise a hybrid of machine learning and human knowledge,

which serve to support an expert analyst in a semi-automated fashion by automatically

detecting where common binaries from Linux-based embedded device firmware deviate

from their expected functionality. The techniques we propose, while implemented here

for a specific kind of firmware, can easily be generalised to support other systems. Our

methodology is composed of the following components:

• A classifier for common types of program binaries contained within Linux-based

embedded device firmware that is resilient to both the heterogeneity of device ar-

chitectures, and cases where analysed binaries contain unwanted data due to the

deficiencies in off-the-shelf firmware extraction tools.

• A domain-specific language and a corresponding interpreter for specifying and eval-

uating functionality profiles, which encode “expert” knowledge in such a way as

to facilitate the identification of hidden/unexpected functionality within program

binaries.
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5.2.1 Overview of Our Approach

To conduct the research presented in this chapter, we use a dataset composed of 15,438

Linux-based firmware images from 30 different device vendors. To obtain these images, we

built custom web- and FTP-crawlers, modified for each device vendor. Our system takes

as input such a firmware image, unpacks it to extract its file-system, and then identifies

all of the ELF program binaries (see, e.g., [33]) within the extracted file-system. It then

classifies each binary based on what kind of well-known service it provides, for example,

web-server, ftp-server, ssh-daemon, or telnet-daemon. In addition to identifying its service

type (which we call a functionality category label), it also assigns an associated confidence

value, which represents the degree of certainty that the binary contains the functionality

associated with its assigned label.

Following classification, we subject each binary to targeted static analysis passes,

which are predefined in so-called functionality profiles. Such a profile corresponds to

the functionality category assigned to the binary, and we define one for each possible

functionality label output by our classifier. These profiles are manually specified using a

domain-specific language, which provides a high-level means to encode expected program

behaviour. By using such an approach, our implementation is both flexible in terms of

the functionality it can capture, such that a wide range of abnormalities can be identified,

and it can be refined and adapted to support detection of future threats. The output

of our defined static analysis passes is a judgement as to whether a given binary con-

tains unexpected functionality for the functionality class it was assigned. If unexpected

functionality is identified, manual intervention is required to ascertain the nature of that

functionality; this might be performed by, for example, a tool such as IDA Pro [14].

In order to train our classifier, we use binaries taken from 800 firmware images, selected

at random from our dataset. Additionally, we sample a further 100 images to construct

a hold-out test set to evaluate the performance of our trained classifier. To construct
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our classifier, we first performed evaluation (on a small-scale) of an extensive suite of 17

supervised learning algorithms on our problem domain (i.e., identifying program func-

tionality classes). We combined the best performing supervised learning classifier with an

adaptation of the semi-supervised self-training algorithm (see, e.g., [191]), which, as we

demonstrate, produces a resultant classifier that exhibits significantly better performance

than one using supervised learning alone.

To evaluate the effectiveness of our approach, we use both real-world samples and

artificially generated samples, known to contain backdoor-like functionality. The artifi-

cial samples were produced using the methodology proposed in [160]. They manifest as

backdoors in the mini httpd web-server and the utelnetd Telnet daemon, which are pro-

grams commonly found within Linux-based firmware. We demonstrate that our approach

is able to identify that the modified binaries contain unexpected, hidden functionality –

even when compiled for different architectures and using varying compiler optimisation

levels. To provide evidence of our method’s applicability in detecting such functionality

in real-world programs, we analyse binaries taken from 50 firmware images, randomly

sampled from our dataset. From this small-scale evaluation, we show our approach is

able to detect nine binaries containing potentially unexpected functionality, and in one of

those cases, discovers a previously documented backdoor [102].

5.2.2 Expectations of Our Approach

In this work, we focus on identifying a class of threat found in common applications,

where those applications contain hidden, additional functionality that deviates from their

expected functionality. In this way, our approach does not claim completely to solve

the problem of automating the identification of unexpected, hidden functionality within

firmware. Instead, it serves to reduce the manual effort of doing so by automating parts

of the process that can be practically automated. Moreover, we do not claim to detect
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all kinds of hidden functionality, for example, authentication bypass vulnerabilities (like

those detected by Firmalice [166]), cryptographic backdoors, highly complex backdoors

[47], or functionality that is hidden due to obfuscation. In embedded device firmware,

from backdoors publicly documented and from our own manual analysis, complex and

cryptographic backdoors are very rare, and conversely, as we show in our experimental

analysis, undocumented, unexpected functionality is common.

As stated in Chapter 2, for many devices, the mere presence of a Telnet or SSH daemon

should signify a real threat – a large portion of firmware does not contain firewall rules to

protect such services, many of which are Internet-facing. Additionally, the user accounts

on many devices generally have weak passwords – with some not even protected using

cryptographic hashing, and on almost all devices, the only user available has privileges

equivalent to the root user on UNIX-like systems. These problems present a tangential

threat that we do not attempt to address using the techniques we propose in this chapter.

Finally, we note that we do not evaluate the effectiveness of our approach in cases

where an adversary has introduced hidden functionality in transit (i.e., point 2 in §2.5.2);

rather, we address the problem of detecting if a device vendor, deliberately or otherwise,

has inserted unexpected functionality into common firmware services.

5.3 HumIDIFy System Architecture

Figure 5.1 provides an overview of our system architecture, which we implement in our

tool, HumIDIFy. Our system takes as input either a firmware image obtained directly

from a device vendor, or a compressed file-system extracted from a device. It then:

1. Unpacks and extracts the input firmware image. Our unpacking engine provides a

unified wrapper around several off-the-shelf firmware extraction utilities, notably:

binwalk [6], Firmware Mod Kit [11] and Binary Analysis Toolkit [29]. If the unpack-

ing process is successful and a file-system is recovered, it is subsequently scanned
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The unpacking engine outputs all ELF binaries

extracted from the firmware image f .
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functionality profile corresponding to the class

assigned by the classifier, and performs the static analysis
passes it defines on the binary. It then outputs if the binary
contains unexpected/hidden functionality, its assigned class

and associated confidence value.

f
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Figure 5.1: HumIDIFy system architecture.

for ELF program binaries, which are used as input to our trained classifier.

2. Classifies each input binary. The classifier component takes as input a binary ex-

ecutable and outputs a corresponding functionality category label and confidence

value. As previously noted, the set of categories match one-to-one with possible

functionality profiles of the profile evaluator and represent general functionality

classes, such as web-server or ssh-daemon. The input binary, its assigned label and

confidence value are used as input to the profile evaluator.

3. Performs static analysis of each binary and outputs a report. For each binary,

the profile evaluator first locates the appropriate functionality profile corresponding

to its assigned functionality category from the profile database. It then performs

targeted static analysis passes upon the binary, as defined in its functionality profile

(see Figure 5.1). It generates a report containing the binary path, if it contains

unexpected functionality, and its assigned label and confidence value, which serve

as a basis for subsequent manual analysis.
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For a given firmware image, the output of HumIDIFy is a report for each of its binaries

that details if it found them to contain potential unexpected functionality, their assigned

classification labels and corresponding confidence values.

5.4 Classification of Binaries

5.4.1 Dataset Composition

In order to train and evaluate our classifier, we require a set of binaries taken from a

representative sample of firmware, that is balanced in the sense that it contains programs

implementing various functionalities. As noted earlier, to obtain these binaries we built

custom HTTP- and FTP- crawlers, which we used to download firmware from 30 different

device vendors.

When processing a given firmware image, if our unpacking engine is unable to success-

fully unpack it, either due to an external tool failure, or exertion of a reasonable threshold

of system resources (i.e., execution time or disk-space), the firmware is discarded. The

dataset of firmware we obtained via our crawlers consists of a total of 15,438 firmware

images, which after processing by our unpacking engine, results in 7,590 successfully ex-

tracted file-systems, corresponding to a total of 2,451,532 (non-unique) binaries.

5.4.2 Scope and Device Functionality

Through the manual analysis of a random sample of 100 firmware images from our dataset,

we observe that, in general, the firmware obtained (although targeted at performing a

number of domain-specific functions) tends to adhere to a common structure: device

configuration is usually performed via a web-interface, and firmware upgrades are often

also integrated into this same interface. Other common services present include file-

servers and remote access services, such as Telnet and SSH daemons. These observations

are consistent with the literature examined in Chapter 3.
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As noted in Chapter 2, a major problem in the analysis of binaries within embedded

device firmware is the heterogeneousness of the architectures they are compiled for. Our

approach targets the predominant architectures: ARM and MIPS and restricts itself to

Linux-based firmware. Although these choices may appear as limitations, we observe

that the vast majority of firmware falls within these boundaries, as highlighted in [76].

In addition, our techniques are general enough to be adapted to other architectures and

operating system targets.

5.4.3 Choice of classification domain

A näıve approach to classify a binary’s functionality would be to assign a functionality

category based upon its filename: for example, an FTP daemon might be called ftpd or

vsftpd. Such an approach, however, has several drawbacks. Firstly, we observe that a

portion of the firmware in our dataset does not unpack cleanly, that is, while we are able

to recover program binaries, we are often unable to recover their filenames. Additionally,

for firmware that we are able to unpack cleanly, we observe that a range of names are

used for binaries that provide the same service. For example, we found web-servers

with filenames, such as webs, httpd, mini httpd, goahead, and web server. Creating

a database of these names, while feasible, would not scale, or handle firmware from new

vendors. Furthermore, having attempted to use just filenames as a basis for a classifier,

on evaluation, we found it to over-fit the binaries from its training set (i.e., the set of files

used to build its filename database) with a bias towards services from particular vendors.

To overcome the deficiencies of the aforementioned approach, we consider two further

methods for classifier construction: supervised learning and semi-supervised learning. As

detailed in Chapter 2, both learning methodologies demand at least a subset of their input

dataset be labelled, and a reasonable number of examples be collected for each such label

to avoid over-fitting. In this case, the labels chosen for classification inherently cannot
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cover all possible binary types found within firmware; we, therefore, focus only on those

services common to most firmware images. To this end, from manual analysis of 100

firmware images (the same sample used in §5.4.2), we selected 24 such labels, and from

those firmware images, we formed an initial training set of 419 unique binaries. In order

to establish uniqueness, we used cryptographic hashing to compare binaries. A number of

labels selected serve as meta-labels, that is, they encode a particular set of functionalities:

one such label is web-server, which covers a number of distinct example binaries within

our dataset: from very simple web-servers, such as uhttpd, to more complex examples,

such as lighttpd. We use such labels in order to ensure our constructed classifier is

robust to different, not seen before examples of labels.

While we acknowledge our initial training set is relatively small in proportion to the

overall number of firmware images collected, manual analysis of binaries is very time-

consuming for a human analyst and one of the problems we attempt to address with this

work.

Traditionally, for malware detection, approaches taken by the literature, such as [151]

have utilised supervised learning to train a binary classifier to distinguish if a binary is

malicious or not. While such approaches are applicable for binaries on commodity systems

– due to the existence of large, balanced datasets of malicious binaries – large datasets do

not exist for binaries found in embedded systems firmware. Moreover, supervised learning

requires roughly equal sized input-sets for each label; in the case of binaries for embedded

device firmware, this is also not possible to construct, due to the relatively small number

of binaries known to contain hidden functionality or backdoors.

Therefore, we take an approach that overcomes the difficulties presented by supervised

learning – we construct a general functionality classifier using semi-supervised learning,

which instead of directly detecting if a binary is malicious or not, provides a classification

of common, well-known program functionality. To detect malicious functionality, we use
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our classifier as an initial filtering mechanism, in order to facilitate targeted static analyses,

which we then use to detect anomalous or malicious functionality in program binaries,

irrespective of the initial number of anomalous binaries identified in our input training

set.

5.4.4 Attribute selection

To train our classifier, as detailed in Chapter 4, we require a set of attributes that can be

used to represent input instances, i.e., in this case, program binaries. In order to select

the most discriminating attributes – to improve classifier performance and training time

– we perform a process of attribute selection. To perform training and attribute selection,

we utilise the open-source machine learning toolkit WEKA [99].

Since our system aims to facilitate analysis of program binaries targeting multiple

device architectures, we restrict the possible attributes to those that are homogeneous

among binaries across different device architectures. As program instructions are ar-

chitecture specific, we use high-level meta-information, i.e., strings and the contents of

function import and export tables. As evidenced in our evaluation in §5.6, this meta-

information is sufficient to derive a classifier capable of inferring the general class of an

arbitrary binary taken from a firmware image with high precision and accuracy.

Although the number of possible attribute types that we consider for constructing our

classifier is small, the number of distinct values associated with each class of attributes is

impractically large to use directly for classifier construction. To overcome this, we apply

attribute selection methods to remove needless, non-discriminating attributes that do not

characterise a general category.

The representation of a program binary as an attribute vector used as input to our

classifier consists of nominal attributes representing if it contains a given API name or

string. That is, for each attribute ai within an attribute vector: ai ∈ {0, 1}, where a
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value of 1 represents that attribute is present in the binary and 0 represents it is not.

As a specific example, suppose the API names: socket, bind and puts are selected as

attributes, and a given training instance is given the label web-server and imports only

the first two API names, then we would represent it using the following attribute vector:

⟨1, 1, 0,web-server⟩.

We use two stages of attribute selection. Our first pass filters attributes based on

their association with a given functionality class. That is to say, for each binary of a

given class, if an attribute is to be included in the set of all possible attributes, it must

be present in a relatively high proportion of instances of that class. For example, for

web-servers, the string GET / HTTP/1.1 is included in a large proportion of examples

whereas, in those same binaries there exist unique compiler strings which are irrelevant.

In the second-stage, we use standard feature selection algorithms found in WEKA.

To perform the first stage of feature selection, we define a threshold delta to filter the

set of possible attributes. To select this value, we construct a number of representations of

our input training set. In each of these representations, we represent a particular training

instance using the attributes remaining after filtering them using a given delta. For each

of these representations, we perform our second-stage of attribute selection, in which we

apply all standard attribute selection algorithms from WEKA to generate further repre-

sentations. To select the optimal delta and attribute selection algorithm combination, we

use each of the representations following second-stage attribute selection to construct a su-

pervised learning classifier and evaluate it using 10-fold cross-validation. In this case, the

optimal combination will be that which produces the best performing classifier in respect

to maximising the number of correctly classified instances. For each combination, to con-

struct a classifier, we use the BayesNet algorithm, chosen arbitrarily to provide a uniform

measure of performance for each algorithm-delta combination. We note that we did not

evaluate the performance of those deltas where API attributes were not considered, thus,
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our evaluation was performed with deltas between 0.1 and 0.7 inclusive, and the follow-

ing feature selection algorithms: CfsSubsetEval with the BestFirst ranker, Correla-

tionAttributeEval, GainRatioAttributeEval, InfoGainAttributeEval, OneRAttri-

buteEval, ReliefAttributeEval, SymmetricUncertAttributeEval, all with Ranker.

From this process, we find CfsSubsetEval combined with the BestFirst ranker (using

default parameters) and a delta of 0.6 performs best. We detail the number of attributes

left after filtering for each delta in Table 5.1, and the result of evaluating a classifier trained

using the second-stage representations for CfsSubsetEval with BestFirst in Table 5.2.

Appendix A shows the results for the other attribute selection algorithms.

Table 5.1: First stage attribute filtering.

Threshold API count String count

0.0 2391 38040
0.1 1688 14328
0.2 1513 11074
0.3 1209 8522
0.4 442 5624
0.5 442 4843
0.6 231 3001
0.7 14 2020
0.8 0 1920
0.9 0 1830
1.0 0 1790

Table 5.2: Second stage attribute filtering
with CfsSubsetEval.

Threshold Correct (%)

0.1 87.8788
0.2 87.8788
0.3 87.8788
0.4 87.8788
0.5 85.4545
0.6 88.4848
0.7 85.4545

The CfsSubsetEval algorithm (outlined in [98]) evaluates the merit of subsets of

attributes by correlating the predictive nature of individual attributes with respect to

their relative redundancy amongst the subset. Those subsets that are highly correlated

with a given class, whilst maintaining a low degree of intercorrelation are considered the

most useful. The BestFirst ranking algorithm searches the subsets of attributes by

hill climbing; that is, starting from an initial solution, attempts to find a better solution

incrementally by changing a single element upon each iteration until a fix-point is reached.
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Table 5.3: Supervised learning algorithm evaluation.

Classifier Correct (%) Time (s)

BayesNet [95] 88.4848 0.00
NaiveBayes [113] 79.3939 0.01
IBk [46] 84.2424 0.00
KStar [71] 84.2424 0.00
LWL [91] 51.5152 0.00
DecisionTable [119] 68.4848 0.58
JRip [72] 66.6667 0.08
OneR [104] 21.2121 0.00
PART [92] 77.5758 0.04
ZeroR 10.9091 0.00
DecisionStump [108] 20.6061 0.00
HoeffdingTree [106] 79.3939 0.00
J48 [147] 76.9697 0.00
LMT [171] 85.4545 0.90
RandomForest [61] 88.4848 0.11
RandomTree 78.7879 0.00
REPTree 64.8485 0.03

For BestFirst, hill climbing is performed in a greedy manner with backtracking.

5.4.5 Construction of the classifier

Following attribute selection, in order to construct our classifier, as a premise to semi-

supervised learning, we evaluated an extensive set of supervised learning algorithms. We

sought to maximise the accuracy of the classifier (i.e., maximise the number of correctly

classified instances, and minimise the number of incorrectly classified instances), whilst

attempting to minimise the time taken to train the classifier. We note that minimisation

of the training time for semi-supervised learning is particularly important as training is

performed as an iterative process. To perform our evaluation, we trained each classifier

using the same labelled dataset, and evaluated it using 10-fold cross-validation. We detail

the results in Table 5.3.

Amongst the possible choices for classification algorithm, we found the two best per-
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forming in terms of optimising the number of correctly/incorrectly classified instances were

BayesNet and RandomForest. Of those, the time taken to train the BayesNet classifier

was less than that using RandomForest: 0.00s compared to 0.11s.

Algorithm 5.1 Bounded self-training.
1: function boundedSelfTraining(labelledData, unlabelledData, v, bound)
2: L ← labelledData, U ← unlabelledData, k ← 0
3: loop
4: train f from L using supervised learning
5: (k’, L’, U’) ← apply f to unlabelled instances in U where u ∈ U’ if confidence(f(u)) ≥ v
6: if U = U’ ∨ k’ − k ≤ bound then return f
7: end if
8: k ← k’, L ← L’, U ← U’
9: end loop
10: end function

In order to perform semi-supervised learning, we adapted the self-training algorithm

outlined in [191], by introducing a bound on its iteration. We show our modified algorithm

in Algorithm 5.1. After training an initial classifier (i.e., performing the first iteration of

Algorithm 5.1), we used binaries from a further 700 firmware images as input to construct

the final classifier, all of which were previously unlabelled. We performed additional

evaluation of that classifier using a further hold-out test set of (manually) labelled binaries

from 100 firmware images.

To train our classifier using Algorithm 5.1, we use the BayesNet classifier to perform its

supervised learning stage, we set a threshold bound of 0.05% and use a value of 0.9 as the

required confidence bound (i.e., bound) to move an instance from the set of unclassified

data (U) to the set of classified data (L). Using a value less than 1.0 as the confidence

bound is required to avoid over-fitting the training-data. A value of 1.0 would produce

a classifier that after being trained over multiple iterations would learn to only correctly

classify instances that were of extremely high similarity to those used to initially train it.

After running the first stage of semi-supervised learning using a range of values, we found

0.9 to be the most suitable – lower values produced classifiers that performed worse when
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using 10-fold cross-validation.

Table 5.4: Semi-supervised iterations.

Iteration 1 2 3 4 5 6 7 8

Correct (%) 88.4848 95.4819 97.0760 97.9021 98.5462 99.2366 99.3256 99.3691

The number of iterations required to reach our selected threshold was eight iterations;

that is, between the 7th and 8th iterations the percentage difference in the classifier’s

performance was less than 0.05%. Table 5.4 demonstrates the monotonic nature of the

number of correctly classified instances at each iteration of training. The final classifier

achieved a correct classification rate of 99.3691% when evaluated using 10-fold cross-

validation, while evaluating it using the hold-out test set resulted in that rate dropping

marginally to 96.4523%. This drop can be attributed to a number of instances being

mislabelled; of those incorrectly labelled, the maximum confidence the classifier gave was

0.65, which was to a dhcp-daemon mislabelled as a upnp-daemon.

5.4.5.1 Avoiding over-fitting

As noted in Chapter 2, over-fitting can become a problem when a classifier is biased to

the data it was trained on, and thus, the chance of introducing such a bias needs to be

minimised in order to produce a useful classifier. In the case of identifying classes of

binaries, we identify two sources of bias:

• Using firmware from a small subset of vendors. As many vendors tend to share code

between the most common services found in their firmware, i.e., for web-servers,

Telnet daemons, and so on, a classifier trained on a dataset consisting of a limited

number of vendors will be biased towards identifying a restricted set of functionality

for each functionality class.

• Using particular types of firmware, e.g., router or IP camera firmware. These de-

vices – as they have similar specifications and requirements – tend to use the same
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programs to perform the same tasks, irrespective of their manufacturer. Therefore,

a classifier trained on a dataset restricted by device type will be biased towards

identifying a restricted set of program functionality for each type of service.

In order to ensure our training- and test sets, are free from bias and are thus, repre-

sentative samples of device firmware from the entire device market, our overall dataset

includes firmware from 30 different device vendors, on which we perform random sampling

in order to construct our training- and test sets.

5.4.5.2 Overcoming limitations in the classification method

A limitation of our classification approach is that a label must be assigned to every input

instance. Therefore, if a binary contains functionality never seen before, the classifier,

rather than returning an unknown classification label, must assign a known label. We

handle this deficiency by assigning a confidence value to each label. This confidence value

allows us to discern between binaries that are assigned a given label with low confidence,

that do not match their functionality profiles – which are less likely to contain unexpected

functionality and require further manual analysis – and those labelled with high confidence

not matching their expected functionality profiles – which are likely to contain additional

functionality.

5.4.5.3 Overcoming limitations in data collection

. E L F . . . . ? ? ? ? ? ? . E L F . . . .

ELF binary

Additional data
Extracted ELF binary

Next ELF binary

Figure 5.2: ELF binary carving.

We observe that binwalk [6] – one of the tools used to construct our unpacking engine

– fails to correctly extract binaries in cases such as that shown in Figure 5.2. As described
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in Chapter 2, binwalk operates by identifying contiguous files by locating so-called “magic

numbers”. Unfortunately, if it happens that an ELF binary is followed by a chunk of data

that does not contain a “magic number”, that data will be considered part of the binary

it extracts. Thus, if we attempt to extract strings from such a binary, strings found

within its “additional data” can potentially interfere with the results of our classifier. To

overcome this, when performing firmware unpacking and file-system recovery, our system

parses the ELF file header of binaries it finds and uses it to compute their correct file-size.

If the calculated size is smaller than the extracted binary, then we remove the additional

data.

5.5 Unexpected Functionality Detection

The output of our classifier is a functionality class label and a corresponding confidence

value. In our system, in order to check if a binary assigned a particular functionality

class contains unexpected or anomalous functionality, we perform targeted static analy-

sis passes. The types of analyses performed in these passes are specified in a so-called

functionality profile, which describes how to check the expected functionality of a partic-

ular program binary. Within our system, the component responsible for performing those

analyses is the profile evaluator. For each functionality class our classifier identifies, we

have manually defined a corresponding functionality profile, which we store in a profile

database (as in Figure 5.1). To extend our system to handle additional functionality

classes, a user must first define a label for that functionality, and then create an appro-

priate functionality profile to describe their expectations of that functionality class. For

example, in the case of a web-server, a user might expect that it will only perform TCP-

based networking, if instead it also performs UDP-based networking, then it should be

flagged as containing unexpected functionality, and further analysed to ascertain if that

functionality is malicious or benign. In this case, the user would encode that a web-server
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is expected to perform only TCP-based networking.

5.5.1 Binary Functionality Description Language

In order to define functionality profiles, we have created a domain-specific language, Bi-

nary Functionality Description Language (BFDL), detailed in Figure 5.3. The language

is statically-typed, expression-based and features a ML-inspired syntax. For a given func-

tionality class, a corresponding functionality profile contains a top-level rule directive,

whose name corresponds to that class, i.e., web server for the web-server class. The

body of that rule should evaluate to true if the binary satisfies the checks performed in

that rule, i.e., it matches its expected functionality profile, and false otherwise, i.e., it

contains unexpected functionality. In addition a single main rule, other rules may also

be defined, which can be parameterised to allow the values returned by different analyses

and rules to be used to influence their control-flow or the parameters of subsequent anal-

yses performed. In this way, rules can be used to define isolated, reusable functionality,

in essence acting as building-blocks for defining more complex rules. The import key-

word allows for further rule reuse by permitting rules to be defined in separate files, thus,

providing a facility to implement libraries of predefined analyses for common tasks. In

addition to boolean values, BFDL also supports strings and integers, as primitive types.

At the core of BFDL are its built-in rules, which serve as a basis for defining more

complex analyses to check for specific program properties and functionality. The most

basic of these are: import exists, export exists and string exists. Each of these rules

derive their results from parsing the binary under analysis in different ways. Both im-

port exists and export exists check for the existence of strings representing imported or

exported function names within the import and export tables of the binary’s container

format, while the string exists rule checks for the existence of a specified byte-string in

the binary. The architecture rule takes a case-insensitive string argument representing a
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⟨top-level⟩ ::= rule ⟨ident⟩(⟨arg-list⟩) = ⟨expr⟩
| import ⟨string⟩

⟨expr⟩ ::= ⟨rule⟩(⟨values⟩)
| let ⟨ident⟩ = ⟨expr⟩ in ⟨expr⟩
| if ⟨expr⟩ then ⟨expr⟩ else ⟨expr⟩
| ! ⟨expr⟩
| ⟨expr⟩ ⟨logic-op⟩ ⟨expr⟩
| ⟨value⟩ ⟨comp-op⟩ ⟨value⟩
| forall ⟨ident⟩(⟨arg-list⟩) ⇒ ⟨expr⟩
| exists ⟨ident⟩(⟨arg-list⟩) ⇒ ⟨expr⟩

⟨type-name⟩ ::= bool | int | string

⟨arg⟩ ::= ⟨ident⟩ : ⟨type-name⟩
⟨arg-list⟩ ::= ε | ⟨arg-list1⟩
⟨arg-list1⟩ ::= ⟨arg⟩ | ⟨arg⟩, ⟨arg-list1⟩

⟨narg⟩ ::= | ⟨arg⟩
⟨narg-list⟩ ::= ε | ⟨narg-list1⟩
⟨narg-list1⟩ ::= ⟨narg⟩ | ⟨narg⟩, ⟨narg-list1⟩

⟨value⟩ ::= ⟨const⟩
| ⟨variable⟩
| ⟨value⟩ ⟨arith-op⟩ ⟨value⟩

⟨rule⟩ ::= ⟨base-rule⟩
| ⟨ident⟩

⟨base-rule⟩ ::= import exists
| export exists
| string exists
| function ref
| string ref
| architecture
| endianness

⟨const⟩ ::= ⟨bool⟩
| ⟨int⟩
| ⟨string⟩
| error

⟨arith-op⟩ ::= + | − | × | ÷ | % | & | ˆ | | | ∼ | << | >>
⟨comp-op⟩ ::= == | != | < | > | <= | >=
⟨logic-op⟩ ::= || | &&

Figure 5.3: BFDL language specification.

device architecture (e.g., ARM or MIPS), and evaluates to true if the analysed binary is of

that architecture, and false otherwise; this rule serves as a basis for creating architecture-

dependent analysis passes.

In order to implement our more complex built-in rules, we leverage the BAP [63]

framework to provide code-lifting and disassembly, and IDA Pro [14] to provide CFG

recovery, which are both described in further detail in Chapter 3. To ascertain if a

function is called within the binary, we provide a rule named function ref. It operates

first by inspection of the call-graph of the binary, and attempts to verify the existence of

an incoming edge to the node representing the function name being searched for; if such

an edge does not exist, then we search for data references to the function, which could

indicate the use of the function as a callback or its indirect use, such as via a function

pointer. As an example, the expression function ref(”listen”) can be used to check
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if the binary makes a call to the listen function, which is associated with opening an

incoming network socket. Similar to function ref, string ref searches for data references

to a given byte-string within the binary.

We provide the forall and exists keywords, which allow us to quantify over the param-

eters of function calls that we are able to identify in the analysed binary. They enable us

to define constraints over those parameters, which can be used to enforce restrictions on

how particular functions should be called (in the case of forall), or ensure a function is

called in a particular way (in the case of exists). For both exists and forall, the inputs

into the underlying analysis pass are a function name to search for, a list of arguments,

qualified with the type of data they should reference, and an expression. The expression

specified defines a constraint over each instantiation of the arguments identified for each

call-site corresponding to the function name. As an example, to check if a binary makes

a call to the socket function with the type argument equal to 2, the following expression

could be used:

exists socket(domain: int, type: int, protocol: int) ⇒ type == 2

We use components of the BAP framework as a basis for writing analysis routines to

implement the functionality of the forall and exists keywords. A core component of these

analyses involves statically estimating the arguments passed to functions. To do this, we

construct CFGs for each function of the binary and then perform call-site identification.

For a given function, we identify its call-sites by searching for blocks containing call -type

instructions (i.e., bl and blx for the ARM architecture) and check if the function is

the target of one of those instructions. In order to recover the arguments passed to the

function, we use the prototype specified with the forall or exists keyword to obtain both its

expected number of arguments and their types. In the interest of maintaining reasonably

lightweight analysis, we make the assumption that the basic block containing the call

to the function searched for contains all of the argument loading instructions for that
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particular call-site. We also assume that any argument loading instructions related to the

call in parent blocks will be conditional, and thus, cannot be determined without further,

more heavy-weight analysis. Since in both the ARM and MIPS instruction sets, argument

passing is implemented by passing values in registers, we estimate integer constants and

string references to the data section of the binary by examination of load operations into

registers. For integer-based constants, argument estimation is trivial as both instruction

sets have instructions for loading constant integers directly into registers. For strings,

estimation is slightly more complex; for both instruction sets, we identify loads into

registers that are address references to the data section of the binary, we then verify the

data at those addresses is string-like by checking for a consecutive sequence of ASCII

characters followed by a terminating NULL byte (i.e., a C-style string). From manual

analysis, we find that C-style strings are the most pervasive type of text-based data, and

are found in an overwhelming majority of binaries from Linux-based device firmware. If

the arguments of a call-site are computed by some complex calculation (i.e., something

that cannot be resolved using constant propagation and folding), our approach will be

unable to recover their values. To represent this failure at the language level, we augment

each type with an additional value, ⊥, which we represent using the error keyword. A

comparison with error that is not itself an error value will always result in false. In a

boolean context, when used as part of a logical expression, error will automatically be

coerced into the value false.

To compose expressions, BFDL supports all of C’s logical and equality operators. It

implements conditionals by way of an if expression, and allows for binding names to values

through the let keyword; the semantics of which follows that of ML-like languages. For a

given functionality profile, its expected functionality may be encoded in a number of ways:

some rules make it possible to estimate “behaviour” in a manner that has a bias towards

minimising the execution time of the profile evaluator, while others trade execution time
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and resources for greater precision.

rule uses udp() = exists socket(domain, type, protocol) ⇒
if architecture(“MIPS”) then type == 2 else type == 1

rule may read files() = exists fopen(filename, mode) ⇒
(mode == “r” || mode == “r+” || mode == “w+” || mode == “a+”)

Figure 5.4: An excerpt of BFDL rules from our standard library.

Figure 5.4 details an excerpt from the BFDL standard library. It shows how checks

for both certain socket and file (stream) behaviour can be encoded within the language.

We note that these rules do not provide an absolute check of the behaviour being tested

– for example, uses udp() checks if the socket API is used with an appropriate parameter

(2 for MIPS, 1 for other architectures). It is possible that a developer may implement a

wrapper around the socket API, which this rule would not detect; it is also possible that

a program might generate the socket type parameter as a result of a complex calculation,

which this rule would also not detect. Therefore, this rule rather tests if UDP-networking

was used in a standard, expected way, than if UDP-networking was used at all.

import “prelude.bfdl”

rule web server() = uses tcp() && !uses udp() && may read write files()
&& !outgoing socket()

rule telnet daemon() = uses tcp() && !(read write files() || uses udp())

Figure 5.5: Simplified example profiles for web-servers and Telnet-daemons.

Figure 5.5 shows simple examples of how one might encode the functionality profiles for

a web-server and a telnet-daemon, and Appendix B details an extended example. Within

functionality profiles, we are primarily concerned with outlining expected functionality;

thus, these rules focus on checking that binaries conform to their expected network and file
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behaviours. We use such simple examples to emphasise how basic rules may be composed

to implement more complex analyses.

5.6 Experimental Results

In this section, we show the evaluation of the separate components of our approach,

according to the points outlined in §5.2. First, we examine the performance of our classifier

on a new hold-out set of manually labelled binaries. We then evaluate the entire system

(i.e., HumIDIFy) using a set of binaries known to have hidden functionality embedded

within them. Following this, we evaluate our tool on a sample of binaries taken from

real-world firmware images. We then examine the run-time performance of our tool and

demonstrate its applicability to large-scale analysis. Finally, we look at how one might

attempt to evade our techniques – within the limitations outlined in §5.2.2, and discuss

possible ways to mitigate such attempts.

5.6.1 Evaluation of Classifier

As outlined in §5.4.5, our classifier was trained on a dataset consisting of binaries from

800 firmware images and subsequently tested against an additional (separate, manually

labelled) dataset of binaries from 100 firmware images. It achieves a correct classification

rate of 99.3691% on its training set using 10-fold cross-validation, and a correct classi-

fication rate of 96.4523% on the independent test set, which, in total, consisted of 451

individual binaries that exactly match their assigned functionality labels. The overall

TPR (true positive rate) over all 24 classes identified by the classifier on the test set was

0.965, while the FPR (false positive rate) was 0.002. Of the instances that were incor-

rectly classified, seven labels were involved. Table 5.5 outlines the TP/FP rates for those

instances, as well as their precision, accuracy and error rates.

In the test set gathered, we found only a single binary that corresponded to the label
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Table 5.5: Statistics for labels that were misclassified.

Label TPR FPR Precision Accuracy Error

cron-daemon 0.000 0.002 0.000 0.996 0.004
dhcp-daemon 0.636 0.002 0.875 0.989 0.011
ftp-daemon 1.000 0.002 0.929 0.998 0.002
ntp-client 1.000 0.002 0.933 0.998 0.002
nvram-get-set 1.000 0.011 0.750 0.989 0.011
ping 0.667 0.002 0.667 0.996 0.004
tcp-daemon 0.000 0.000 0.000 0.998 0.002
telnet-daemon 0.800 0.000 1.000 0.998 0.002
upnp-daemon 0.739 0.005 0.895 0.983 0.017
web-server 0.939 0.010 0.886 0.988 0.012

cron-daemon, the remainder of binaries that implemented such functionality we labelled as

busybox. This can be explained by the existence of busybox in an overwhelming majority

of firmware images in our dataset, which includes the functionality implemented by the

cron daemon. Our classifier mislabelled the cron-daemon instance as a dhcp-daemon. We

found the same pattern for instances of both the tcp-daemon label, of which we found

none of in our test set, and the ping label, of which we found three, one of which was

mislabelled as nvram-get-set. Of the incorrectly labelled instances of the telnet-daemon

label, one was labelled as nvram-get-set. We found four instances of the dhcp-daemon

label (of 11) to be mislabelled; they received the labels: ftp-daemon, nvram-get-set, ping

and upnp-daemon. Of the two (of 33) mislabelled web-server instances, one was labelled

as a upnp-daemon, while the other was labelled as cron-daemon. In this case, we observed

similarity in the API used by the instances of these services, which was the source for the

mislabelling. The upnp-daemon label was mislabelled in six (of 23) cases, four of those

were assigned the web-server label (for the reasons previously described); the remaining

two were mislabelled as nvram-get-set.

The nvram-get-set label represents binaries that include general functionality to access

and modify non-volatile storage (NVRAM, explained in detail in Chapter 2), often found
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in Linux-based embedded devices. Many devices contain binaries specifically for NVRAM

interaction (commonly called nvram-get and nvram-set); however, we have found that

some program binaries implement NVRAM interaction directly, as opposed to relying on

these dedicated utilities. Thus, of all labels, we would expect it to induce the highest FP

rate. For all instances in our test set where an instance was incorrectly mislabelled as

nvram-get-set, we identified this behaviour as the cause.

Overall, while our classifier exhibits a number of false positive and false negative

results, for the most pervasive services found within firmware, it is highly successful in

assigning the correct label to binaries – irrespective of their origin (i.e., even if they are

new instances of common services).

5.6.2 Performance on New Artificial Instances

In this section, we demonstrate how we assess the ability of our system to recognise hid-

den functionality in well-known applications, modified by ourselves to contain additional,

unexpected functionality.

To perform the evaluation, we modified the source-code of two services, mini httpd

and utelnetd – two of the most common services found in embedded device firmware from

all device vendors. We inserted “unexpected functionality” into each of these services by

implementing a remote-control backdoor, using the same methodology as that proposed

in [160]. We compiled modified and unmodified versions of both services, for both ARM

and MIPS targets, using various GCC compiler optimisations (-O0, -O1, -O2, and -O3).

Our tests consisted first of using the unmodified versions of the two services as input

to our system (to act as a baseline). In each case, our system assigned the correct func-

tionality label with a confidence value of 1.000, and reported each as not containing any

unexpected functionality. We then used the modified binaries as input to our system, and

in all cases, each binary was assigned the correct classification label with a confidence of
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1.000. Furthermore, their feature vectors remained unchanged compared to their base-

line versions – indicating the features chosen to define the binary functionality for those

classes were discriminating enough to represent the core functionality for those classes.

Additionally, in all cases, our system was able to correctly identify the unexpected func-

tionality inserted into the modified binaries. From this, we observe both the effectiveness

of our system in identifying hidden functionality, and its generality to handle program

binaries of multiple device architectures compiled using different optimisation levels.

5.6.3 Real-world Performance Using Sampling

In this section, we evaluate the performance of our system using real-world data. The

number of binaries within our overall dataset is too large to feasibly evaluate our approach

(as manual analysis is required); therefore we use binaries taken from a random sample

of 50 firmware images from that dataset. Of those 50 firmware images, a total of 15,507

program binaries were identified and used as input to the classification component of

HumIDIFy. To make evaluation practical, we set a confidence value threshold of 0.9

to determine if a binary should be evaluated by the functionality profiler component.

We selected this value for two reasons: it maintains consistency with the value chosen

to train the classifier, and those binaries that were classified with confidence above this

threshold value would be likely to match the functionality of their assigned label with a

(known) high probability i.e., 96.4523%. For the purposes of our experiment, the binaries

processed that were assigned a label with a confidence value below 0.9 we considered to

be classified as unknown.

From the 15,507 binaries, 4,012 were classified with a confidence value of 0.9 or greater.

After removing duplicates, 425 unique binaries were classified with a confidence value

equal to or above 0.9. From manual analysis, 392 were classified correctly, and of those

classified correctly, nine were flagged by HumIDIFy as potentially containing unexpected
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functionality.

Of those nine binaries, six of them were found within the web-server class, one within

the ssh-daemon class, one within the telnet-daemon class, and one within the tcp-daemon

class. HumIDIFy identified a web-server binary that contained a previously documented

backdoor – an embedded management interface which provides shell execution – which

has been reported to be present in a number of devices by the device manufacturer

Tenda [102]. Another contained an unexpected built-in DNS resolver. Two instances

contained the same unexpected feature: an undocumented internal interface for device

configuration listening on a non-standard port, which provides privileged access to anyone

with shell access to an affected device. A further web-server was found to interact with

the Syslog daemon over UDP to perform logging, and hence failed to match its expected

functionality profile which assumes only TCP-based networking. Another example was

a custom application implementing HTTP proxy functionality, which was actually mid-

dleware for the Trend Micro kernel engine. It was classified as containing unexpected

functionality, as not only does it implement HTTP request processing using TCP, it also

provides additional functionality via UDP. The telnet-daemon identified was implemented

in a non-standard manner and thus, was flagged as containing unexpected functionality.

A binary appearing as a ssh-daemon in the first stage of classification mismatched the

second stage of processing due to being statically linked. The first stage of classification

was correct as the classifier was able to correctly label the instance based upon string

features alone. Another custom service detected was an Internet telephony proxy. In this

case, HumIDIFy classified it as a tcp-daemon; from manual analysis of the service, we

found it to support both TCP and UDP as a means of data transmission – thus, leading

it to be classified as containing unexpected functionality.

In this small-scale evaluation, we observe that our method not only supports finding

instances of services that are strictly adhering to the original set of functionality labels,
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but also those services that share the same core functionality with additional features.

This is useful for an analyst, as it allows them to filter services that are known, but contain

unexpected functionality, and those services that may be of interest that contain additional

functionality unknown to HumIDIFy. Furthermore, this evaluation also demonstrates the

flexibility and effectiveness of our system in a practical scenario: an analyst wishing to

evaluate a firmware image in a more “paranoid” mindset can set the confidence threshold

for classifier label assignment to a low value to have the system identify a larger amount of

potential hidden, unexpected functionality, whereas an analyst wishing to analyse a large

amount of firmware quickly can set this confidence threshold to a high value to limit the

amount of manual analysis required. Moreover, as shown, on real-world data, our system,

with a modest confidence threshold, is able to successfully identify binaries containing

unexpected functionality – some of which representing real-world threats.

5.6.4 Performance

In this section, we examine the run-time performance of our analysis approach. For a

single binary, the average time taken for our system to perform feature extraction is

1.31s. The average time it takes to classify a single binary is 0.291s (not including the

time taken to invoke the Java virtual machine in order to run WEKA). The time taken

to execute a profile is dependent upon the complexity of that profile. In the worst case

(where we reconstruct function CFGs), the average time our system takes is 1.53s; we find

the time taken where CFGs are reconstructed is proportional to the number of functions

present in the binary being analysed.

From analysis of our dataset, we find an average firmware image to contain 310 bina-

ries; thus, the average time to process a single firmware image – assuming a worst-case

scenario, whereby our classifier assumes a confidence threshold of 0.0 (resulting in every

binary passing through each stage of analysis) is 970.61s. We note that this evaluation
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does not take into account the time taken to perform the final stage of analysis, i.e.,

that performed by a human analyst, who will manually analyse the binaries containing

unexpected functionality.

In contrast to other approaches, such as that taken by the authors of Firmalice [166],

which has similar goals, but identifies binaries containing authentication bypass vulner-

abilities as opposed to hidden, unexpected functionality, HumIDIFy performs compara-

tively well. It is able to process an entire firmware image – on average – in roughly the

same time taken to process a single binary using Firmalice. This performance evaluation

demonstrates the feasibility for our techniques to be used for large-scale analysis.

5.6.5 Required Manual Analysis

As noted in §5.2, our implemented approach requires a degree of manual analysis to

confirm its findings; first, to verify that what it has identified as potentially anomalous

is indeed anomalous, and, second, to ascertain what that functionality is. This manual

analysis can be guided by the output of our tool: namely, using the functionality label

assigned to the binary by its classifier component and the contents of the corresponding

functionality profile. Thus, the effort of manual analysis on a single binary using the

output of our tool compared to performing manual analysis of the same binary alone, i.e.,

without any knowledge of what functionality it is expected to exhibit, will be reduced.

When considering the analysis of an entire firmware image – manually compared to

when using our tool – based upon our findings in §5.6.3, if only common services are

checked for anomalous functionality, it is possible that the use of our techniques negates

the need for any manual analysis, as in general, all binaries that can be checked by our

approach conform to their expected functionality profiles. In the case where a binary is

identified as anomalous, from our findings, in an overwhelming majority of cases, that

binary will be the only binary identifed as anomalous within the associated firmware
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image, thus, in practice, the manual effort of analysing a firmware image will be reduced

to that of checking the functionality of a single binary, as opposed to checking (on average)

310 binaries.

5.6.6 Limitations & Discussion

HumIDIFy relies on certain meta-data: both strings and imported symbol names. While

strings are present within all binaries, imported symbol names are only present within

dynamically-linked binaries. Thus, when classifying a binary that does not contain all

of the required meta-data, incorrect labelling will occur, and thus, lead to false positives

(i.e., the binary will be reported as containing unexpected functionality, when it does

not). Since our techniques are intended to reduce the time taken for manual analysis,

as opposed to being completely automated, we view reporting a binary as potentially

containing unexpected functionality, and therefore prompting manual analysis as the cor-

rect behaviour for our approach. Moreover, from manual analysis of a large number of

firmware images, we have found that an overwhelming majority use dynamic-linking; we

attribute this to the general lack of storage space available on embedded devices and the

space savings afforded by utilising dynamic-linking.

If an attempt was made to evade our classifier with, for example, a binary that is a

web-server manifesting as say, a Telnet daemon, our system would still detect the binary as

containing unexpected functionality due to its two-stage classification mechanism. The

expected profile of a Telnet daemon would obviously be quite different from that of a

web-server, which the modified binary would fail to match. Thus, our overall approach is

arguably robust despite the potential limitations of its individual components.
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5.7 Chapter Summary

In this chapter, we have presented a semi-automated framework for detecting hidden and

unexpected functionality in firmware. At the heart of our approach is a hybrid of machine

learning and human knowledge encoding within our domain specific language, BFDL. As

we have shown, this combination is a highly effective method for detecting unexpected

functionality and (in some cases) backdoors in firmware.
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In this chapter, we present techniques to aid in identifying hard-coded credential checks

and hidden, undocumented commands in program binaries from Linux-based embedded

device firmware. In order to demonstrate the effectiveness of our approach, we present a

proof-of-concept tool, Stringer, which, using our techniques, is able to identify a number

of real-world backdoors, as well as aid in the recovery of undocumented protocol command

sets.

6.1 Motivation

The motivation behind the work presented in this chapter is similar to that presented in

Chapter 5. Though, whereas HumIDIFy, the tool presented in that chapter, attempts to

139
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aid in the detection of unexpected, potential backdoor functionality in common services,

Stringer, the tool presented in this chapter, attempts to aid in the detection of the triggers

required to activate such functionality.

The current state of embedded device security needs much improvement – as evidenced

in previous chapters: from manufacturers deploying outdated, vulnerable software com-

ponents within device firmware, to so-called debug interfaces being accidentally enabled

within production versions of firmware (e.g., [36]). Numerous backdoors – all activated

using undocumented commands or features – have been reported, e.g., [38, 102, 103]. The

impact of these malicious, or simply bad practices is exacerbated by the sheer number

of devices available, with each device potentially having multiple firmware versions. Or-

ganisations handling sensitive data or critical infrastructure require a means to determine

the trustworthiness of a device before deploying it as part of their infrastructure. Such

analysis is currently either simply not done, or is carried out manually by an expert. This

is obviously a very costly process that does not scale. Moreover, because the evaluation

process is so expensive and needs to be done for each firmware version, it has the negative

consequence of motivating organisations not to update a device’s firmware, leaving them

exposed to known security vulnerabilities.

The techniques we present in this chapter aim to reduce the effort of performing certain

aspects of this manual analysis – primarily by automatically identifying interesting code

structures and the functions they reside in. Our techniques are targeted at performing

analysis in a lightweight, scalable manner and, are thus, applicable to processing large

collections of binary executables found in Linux-based embedded device firmware, while

being general enough to be applicable for use on binaries for more commodity hardware.

We say that a section of code is interesting when it exhibits unexpected behaviour,

where that behaviour will generally only be executed when certain conditions are met –

such as on the input of a special keyword. Using the terms we have defined in Chap-
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ter 4, the unexpected behaviour corresponds to a backdoor payload, and the conditions

to be met – i.e., successful comparison with a special keyword corresponds to a backdoor

trigger condition. The code executed as a result of successful comparison with a special

keyword is often not accessible by any other means, and is thus, uniquely guarded by

that keyword. Our approach automates much of the process of identifying functions that

contain functionality that is guarded by such keywords.

By applying our techniques to real-world firmware, we are able to find three backdoors,

which manifest as hard-coded credential checks. Furthermore, we are able to demonstrate

our approach is equally effective in recovering the protocol messages of both known and

proprietary text-based protocols. In the case of such protocols, our method allows an

analyst with knowledge of known protocols to isolate the function responsible for pars-

ing the protocol and subsequently identify any superfluous protocol messages it utilises

(which are often indicative of additional, undocumented functionality), with relative ease

compared to manual analysis with tools such as IDA Pro [14], strings and grep.

6.1.1 Contributions

In this work, we demonstrate our tool, Stringer, which implements our aforementioned

methods for performing lightweight, large-scale static analysis of commodity embedded

device firmware. It serves as a complementary approach to standard manual analysis

techniques, by reducing the time taken to identify constructs containing backdoor-like

functionality – as defined in our framework described in Chapter 4. We demonstrate the

effectiveness of our tool through identification of three backdoors, which we later present

as case-studies in §6.5. The overall contributions presented in this chapter are:

• A set of heuristics for automatically identifying static data comparison functions.

• A metric for measuring the degree a binary’s functions’ branching behaviour is

influenced by comparisons with static data, where that static data guards access to
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unique functionality.

• The result of applying Stringer to a set of 7,590 firmware images, which exposes a

number of backdoors. Additionally, we demonstrate how our methods can automat-

ically identify static data processing routines. Concretely:

– We demonstrate the recovery of the full FTP command set handled by a variant

of vsftpd from Linksys firmware and the recovery of the SOAP-based RPC

command set from a Netgear firmware’s web-server.

– We identify two previously undiscovered authentication backdoors relying on

hard-coded credentials: one in a Q-See DVR device and the other in a TREND-

net router.

– We identify a third (previously reported) backdoor in DVR firmware from Ray

Sharp.

6.2 Methodology

In order to identify a program’s functions whose branching behaviour is influenced by

comparisons with static data, where that static data guards access to unique functionality,

we use the following methodology:

1. We first automatically identify all possible static data comparison functions (e.g.,

strcmp) used within the analysed binary.

2. We perform analysis of the call-sites of those functions and extract the static data

they compare against.

3. For each function containing those call-sites, using the extracted static data, we

construct sets of sequences of that data that must be successfully compared against

to reach each basic block of the function.
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4. Using those sets as a basis, we compute a score for each function, which provides

a measure of how much of its conditional processing is dependent on comparisons

with static data that guards unique functionality.

5. Finally, we use these scores to impose an ordering over all of the functions – i.e., to

help an analyst choose which functions to analyse first.

When attempting to perform the first step of our methodology, i.e., identifying a

program’s static data comparison functions, a näıve approach might rely on using the

symbol names of the functions imported by a program and look for well-known comparison

functions such as strcmp or strncmp. Such an approach, however, has a number of

drawbacks. To reduce the space occupied by program binaries, firmware developers often

opt to strip such symbol information. Additionally, if the binary is statically linked,

then there will be no list of imported functions to extract such information. In order to

overcome these problems, we instead use a number of heuristics to identify such functions,

which can be applied in an automated manner. Our approach relies on first identifying

call-sites where at least one argument passed is static data and where its return value is

used in a boolean context to influence future control-flow. By analysing all call-sites of

this nature, we are able to identify function usage patterns, which allow us to estimate

the set of functions that are most likely static data comparison functions.

Once the static data comparison functions have been identified, to perform the re-

maining steps, we first label the basic blocks of each function with a set of static data

sequences. These sets dictate the sequences of static data that must be matched to reach

each block. Based on these sets, we calculate a score for each static data item relative to

how it influences the branching behaviour of the function. Finally, we calculate a score

for each function based on the scores assigned to the static data. These scores are used

to impose an ordering of functions where those that score highly are those that contain

decision logic that is dependent on comparisons with static data, where that data guards
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uniquely accessible functionality.

This process scores functions that implement protocol handling or contain parsing

functionality the highest. Further analysis of those functions and their associated static

data enables us to identify additional, undocumented functionality and (possible) back-

door functionality.

For the proof of concept tool we have developed, Stringer, which implements our

methodology, we leverage components of the BAP framework [63] and IDA Pro [14]. We

rely on a number of useful components provided by BAP; in particular, the IL (inter-

mediate language) it uses: BIL [97], its code-lifting components and the extensive set of

algorithms implemented for handling graphs. We use IDA Pro to aid in CFG recovery.

6.2.1 Notation

In this section, we outline the notation used in the remainder of this chapter. In addition

to the notation defined in Chapter 2, we denote a function of a program P as f ∈ P . We

use fblocks to denote the set of basic blocks of a function f , for a given block we use baddr

to represent its entry address, and binsns to represent the sequence of its instructions lifted

to BIL instructions. We use succs(b) and preds(b) to represent the set of successor and

predecessor blocks of a block b. Additionally, we use the abstract notion of “sections” to

denote regions of program’s memory that have particular properties, i.e., :

• sectiondata which corresponds to the section holding data that can be both read and

written.

• sectionrodata which corresponds to the section containing constant, read-only data.

• section∗ which corresponds to the union of the previous two sections.

Finally, we use the notation mk (where m is a map) to evaluate to the value corre-

sponding to the key k within m. While to associate the value v with the key k within m



145 6.3. Identifying Static Data Comparisons

we use the notation mk ← v.

6.3 Identifying Static Data Comparisons

Due to the composition of binaries found in Linux-based firmware – and indeed most

commodity binary programs – it is both unreliable and restrictive to rely on symbol names

to indicate functions used for static data comparison. In general, firmware images contain

a mix of binaries that use either static or dynamic linking to call external library routines

(such as the C standard library). Furthermore, a significant portion of those binaries

are often stripped of symbol names. To more reliably identify static data comparison

functions, we propose a collection of heuristics, which, together, are able to identify these

types of functions, based on their call-site properties, and overall usage within a binary.

6.3.1 Code & Function Properties

Our heuristics are derived from a number of code and function properties, which we ob-

serve from manual analysis of the call-sites of static data comparison functions in binaries

from both ARM and MIPS Linux-based device firmware.

Argument references Since static data comparison functions compare to hard-coded

data, at least one function argument either points to, or is a direct reference to read-

only program memory or the initialised data section. From manual analysis, we find that

in many cases, those arguments are generally unique (i.e., compared to only once) in

functions that perform a substantial amount of static data processing.

Function arity Comparisons, by their nature, are made between at least two items;

therefore, the arity, or the number of arguments passed to a data comparison function we

find to be at least two, and three in length-bounded comparisons (i.e., strncmp).

Branching properties From our observations, the result of a call to a data comparison

function generally influences a branching condition. Thus, one of the variables influencing



6.3. Identifying Static Data Comparisons 146

the branch will be tainted by the return value of that comparison function. In most cases,

we found a literal value of 0 compared against in order to compute branching conditions

– which, in a boolean (i.e., matched/not matched) context represents true or false.

Local call frequency We observe that data processing routines, such as protocol

parsers, generally utilise the same comparison function many times with different static

data arguments, as opposed to different comparison functions for each element of static

data to be compared against. Therefore, if a function contains many call-sites involving

the same static data comparison function, in most cases, we would expect it to perform

some degree of parsing.

6.3.2 Data Properties

While the previous properties describe attributes of call-sites, the following properties

describe features of static data we observe used by those call-sites. With the premise

that hidden commands and undocumented protocol messages are often found in parsing

routines, we focus analysis of call-sites of static data comparisons found in protocol or

message-based parsing routines. In these cases, we observe that the static data is contained

in either sectionrodata or sectiondata and is generally ASCII-based and NULL terminated

(i.e., C-strings). In addition, in general, we find the static data exhibits the following

properties:

• It does not contain any characters (or combination of characters) that are indicative

of it being a format string. Format strings can be identified by scanning a string

for the ‘%’ character, and checking if that character is followed by common format

directives such as ‘d’, ‘s’, or ‘c’.

• It does not contain certain whitespace characters other than new line, line feed and

space, i.e., does not contain tab (‘\t’) or vertical tab (‘\v’), nor does it contain

characters that are used as control characters.
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6.3.3 An Algorithm for Finding Static Data Comparisons

In this section, we detail our algorithm for identifying static data comparison functions,

which is based on the observations outlined in the previous two sections. Its process can

be decomposed into the following steps:

• For each function in a binary, we identify all basic blocks that contain function calls.

• Of those function calls, we filter out those whose return value does not influence

branching conditions, and those that do where the branching condition they influ-

ence is not a comparison against 0.

• We analyse the call-sites of the remaining function calls based on their arguments,

and categorise them using two cases: an “ideal” case and a “catch-all“ case.

• We associate a score to each case, and use it to compute an overall score for the

function’s usage throughout the binary.

We categorise a call-site as the “ideal” case when there are two or more arguments

passed, and one of those arguments is a reference to static data that conforms to the prop-

erties we observed in §6.3. Additionally, that argument and one of the other arguments

should not be register-based constants, such as integers or floating point numbers that are

not also (address) references to section∗. This case models the common scenario where a

comparison function takes two references to data: one static, and the other dynamic. We

categorise a call-site using the general “catch-all” case when at least two of the arguments

identified do not reference constant data.

The result of applying our algorithm provides us with a set of functions that are

likely to be static data comparison functions, as well as a relative score for each such

function that indicates the likelihood it is a static data comparison function. Algorithm 6.1
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shows the computations we perform to calculate the scores for each possible static data

comparison function within a given binary B.

Algorithm 6.1 Algorithm to compute heuristic scores.
1: function computeHeuristicScores(ς, δ, µ+, α , α∗, B)
2: ν ← {}
3: for each f ∈ B do
4: ν ′ ← {}
5: for each b ∈ {b | b ∈ fblocks ∧ branchesOnCall(b) ∧ branchesOnZCmp(b)} do
6: argsdata ← ∅, argsrodata ← ∅, argsother ← ∅
7: for each arg ∈ dependentArgs(b, 3) do
8: if arg ∈ sectionrodata then
9: argrodata ← argrodata ∪ {arg}
10: else if arg ∈ sectiondata then
11: argdata ← argdata ∪ {arg}
12: else if arg /∈ section∗ then
13: argother ← argother ∪ {arg}
14: end if
15: end for
16: addr ← faddr
17: if |argrodata|+ |argdata|+ |argother| ≥ 2 ∧ containsIdealSD(args) then
18: ν ′

addr ← ν ′
addr + ς

19: else if |argdata|+ |argother| ≥ 2 then
20: ν ′

addr ← ν ′
addr + δ · ς

21: end if
22: end for
23: ν ← mergeScores(ν, applyRewards(applyPenalties(ν ′, α , α∗), µ+))
24: end for
25: return ν
26: end function

In Algorithm 6.1, we use some notational shorthand. We use νaddr to represent the

heuristic score we assign to the function whose entry point is the address addr. We use ς

to represent the value we increase νaddr by when a call-site satisfies the “ideal” case; when

the “ideal” case is not encountered, we use a multiplier δ to scale ς such that 0 < δ ⩽ 1,

prior to incrementing. After processing the function f (the inner loop in Algorithm 6.1),

the function-local scores for each possible static data comparison function ν ′ are merged

into a global map of scores ν. Prior to this merge, we apply two modifiers as rewards and

penalties : we scale up the score of the suspected static data comparison function with

the highest number of call-site occurrences within f by a constant µ+, where µ+ ≥ 1
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(accounting for local call frequency), we scale down the score of every function h that

references the same static data multiple times by α , where 0 < α ≤ 1 (accounting for

argument references). We apply further scaling of α by α∗ which is raised to the number

of non-unique data references n, used as arguments to h. That is, if h has the address

haddr, haddr ← haddr · α · αn
∗ .

In addition to notational shorthand, for brevity, we also reference a number of func-

tions:

• containsIdealSD evaluates to true if at least one of the expressions in the set passed

as an argument satisfy the aforementioned data constraints.

• branchesOnCall evaluates to true if any variable in the conditional expression of

the block is tainted by the last function invocation within the block.

• branchesOnZCmp evaluates to true if the conditional expression of the block de-

pends on a comparison with 0 (or a semantically equivalent boolean comparison).

• degin/degout evaluate to the number of incoming/outgoing edges from the block (as

detailed previously in Chapter 2).

• dependentCall evaluates to the function that would cause branchesOnCall to eval-

uate to true.

• dependentArgs evaluates to a map of at most n expressions that correspond to the

arguments passed to the function call that dependentCall evaluates to.

• applyPenalties and applyRewards perform the previously outlined score modifica-

tions.

• mergeScores merges the locally computed scores (on a function-level basis) into the

global map of scores.
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Table 6.1: Concrete assignments to heuristic variables.

Variable Assignment

ς (ideal case increment) 10
δ (general case down-scaling) 0.1
µ+ (highest frequency reward) 1.2
α (duplicate argument penalty) 0.5
α∗ (duplicate argument scaling) 0.95

To select the concrete assignments of the variables: ς, δ, µ∗, α , and α∗, used in the

implementation of Stringer, we performed a number of small-scale experiments. In those

experiments, from a dataset of 50 firmware images, we manually identified the comparison

functions present in each binary, this enabled us to create a list of actual static data

comparison functions. We then applied computeHeuristicScores to each of those

same binaries in order to extract a list of expected comparison functions – corresponding

to a particular variable assignment. To find an optimal assignment, we iteratively tested

different variable assignments, which we modified according to the constraints outlined

in §6.3.3. The assignments listed in Figure 6.1 were those that maximised the number

of correctly identified comparison functions over all of the binaries in the dataset. On a

test set of 50 binaries, these assignments were able to identify all of the standard C string

comparison functions used by each binary.

6.4 A Metric for Scoring the Importance of Code

In this section, we discuss the design and implementation of our metric, which using the

list of possible static data comparison functions computed using Algorithm 6.1, provides

a measure of the degree to which a function’s execution is influenced by comparisons with

static data, where that data guards the execution of uniquely reachable functionality.

More specifically:

1. It discovers branches within each function that are influenced by call-sites of static
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data comparison functions.

2. For each of the call-sites, it assigns a block-level score to the static data provided

as its arguments. This score gives a measure of how important the comparison the

static data was used in is, relative to the other comparisons identified within the

function, based upon how much unique functionality a successful comparison with

it guards.

3. It computes a function-level score based on the block-level/static data score assign-

ments, which provides a measure of how much a function’s decision logic is influ-

enced by comparisons with static data, where that static data guards the execution

of uniquely reachable functionality.

For a given binary, the functions assigned the highest scores will be those with a

relatively high density of decision logic that depends on comparison with static data,

where those comparisons lead to execution of functionality that cannot be reached by

other means.

6.4.1 Requirements of the Metric

As discussed above, our metric’s goal is to maximise the score it assigns to functions that

contain decision logic that depends upon static data comparisons, where those compar-

isons tend to uniquely isolate functionality.

In order to assign block-level scores to static data items (step 2 above), we assign

them a score based on the properties of the successor blocks of the block containing the

call-site it is used in and their reachability. A high score should be assigned if the only

way to reach those successor blocks is due to the comparison with it succeeding. In this

case, it will essentially isolate the functionality performed by those successors. There are

a number of ways to assign a base score to a given block, and how to use that score
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to calculate the score for an item of static data that guards its execution. We base our

calculations on the following observations:

Number of incident blocks We consider a block that has many incident edges a so-

called join-point. In this case, its functionality can be considered to be of less importance

than the functionality of a single isolated code path as it is reachable by many paths.

Therefore, as its functionality is not uniquely reachable, we calculate the influence it has

on the scores assigned to the static data compared in its predecessor blocks as a function

of the number of incident edges it has (i.e., degin(b)).

Branches as “guards” of functionality The functionality guarded by a comparison

with static data is that of the immediate successor block associated with the branch condi-

tion it influences by evaluating to true, and its successor blocks. Where that functionality

is uniquely reachable, the block containing the static data comparison will dominate (see

Chapter 2) those blocks. We observe that for any given static data comparison, the degree

it divides the overall CFG along the branch which is followed when the comparison is true

is a general indicator of the importance of the static data involved. Therefore, we assign

a relatively higher score to static data that guards large amounts of functionality in this

manner.

6.4.2 Definition of the Metric

We divide the computation of our block-level metric score (i.e., that calculated in step 2

in §6.4) into two stages:

1. For a given function, we first construct sets of static data sequences for each block

within its CFG.

2. For each block, using the computed static data sequences, we assign a score to the

static data used as part of static data comparisons that influence its reachability.
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1

2

3 4

Figure 6.1: Example CFG with static data
comparisons.

Table 6.2: Computed string sequence sets
for Figure 6.1.

Label Computed string sequence set

1 {[]}
2 {[s1]}
3 {[s2, s1]}
4 {[s1]}

The computed static data sequence set for a block represents all combinations of

possible static data comparisons that must be successful in order to reach that block. For

instance, in Figure 6.1, if we consider both nodes 1 and 2 static data comparisons, where

the branches from 1 → 2 and 2 → 3 are taken if the comparisons at 1 and 2 evaluate

to true, then the sets we compute are those shown in Table 6.2. In which we use the

notation si to represent the static data compared against at node i.

Algorithm 6.2 Algorithm to compute static data sequences.
1: function computeSDS(b)
2: for each p ∈ preds(b) do
3: if branchesOnStaticData(p) then
4: sp ← branchData(p)
5: bs ← bs ∪ {Si ++ sp|Si ∈ ps}
6: else
7: bs ← bs ∪ ps
8: end if
9: end for

10: if bs = ∅ then
11: bs ← {[]}
12: end if
13: end function

Algorithm 6.2 details our algorithm for computing sets of static data sequences, which

we apply to each block until the computed static data sequences for all blocks reach a

fix-point. We use the notation ++ to denote the concatenation operator on sequences.

Additionally, we make reference the following functions:

• branchData(b) evaluates to the static data compared to at block b.
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• branchesOnStaticData(b) evaluates to true if the branching of b is influenced by a

comparison with static data.

We ignore loops when determining if a fix-point is reached over the sets computed by

computeSDS(b); this ensures termination and avoids the construction of sequences with

repeated sub-sequences. If after iterating over all of preds(b), bs is equivalent to ∅ (i.e.,

no paths contain static data that needs to be matched to reach bs), then we set bs to {[]}.

We use this to represent the situation where there is no known path to reach b that is

dependent upon successful comparison with static data.

Algorithm 6.3 Algorithm to compute metric scores.
1: function computeScores(ω, f)
2: M ← {}
3: for each b ∈ fblocks do
4: S ← bS, baseScore← ω(b), numChains← |S|, countMap← {}
5: for each Si ∈ S do
6: for each s ∈ Si do
7: countMaps ← countMaps + 1
8: end for
9: end for
10: for each s ∈ countMap do
11: occScale← countMaps

numChains

12: Ms ←Ms + baseScore× ln
(
1 + occScale× 1

degin(b)

)
13: end for
14: end for
15: return M
16: end function

We perform step 2 of the algorithm, i.e., computation of the scores for each element of

static data, using Algorithm 6.3. We first assign a base score to each block, which we call

basic block complexity; we represent its computation by ω(b), which evaluates to |binsns|

– i.e., the number of lifted (BIL) instructions for the block b. We then take each static

data sequence computed using Algorithm 6.2 and compute a score for each item of static

data used in a static data comparison that influences the reachability of a block. For each

block, we take its set of static data sequences S and iteratively compute a score for each

element of static data found within the static data sequences. The final result is a map
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M of static data and their associated scores.

We approach the computation for static data scores in two sub-phases: for each block,

we first construct a mapping of static data to the number of times that data, i.e., s,

occurs within the static data sequences associated with that block S. This count is used

to determine a scaling factor as a fraction of the total number of sequences and the count

of those that s is present in. We use this value to represent how much influence a successful

comparison with a particular element of static data has on the reachability of a block.

If in all cases, the data s has to be matched to reach a block, then the fraction will be

equivalent to 1. Using these fractions, we update the scores assigned to each element of

static data within the map M . We compute the update as a function of the sum of the

base score assigned to the block – computed by ω(b) – and perform scaling based on its

influence on the reachability of the block and the number of incident edges into the block,

i.e., 1
degin(b)

.

In order to compute the score for a function, we sum the scores assigned to its static

data (computed using Algorithms 6.2 and 6.3). Our function-level score, therefore, pro-

vides a measure of how much of a function’s decision logic is influenced by its static

data comparisons, where those comparisons lead to the execution of uniquely reachable

functionality.

6.5 Experimental Evaluation

Our tool, Stringer, implements our techniques detailed in §6.3 and $6.4, as well as auto-

mated firmware acquisition, unpacking and report generation. In this section, we discuss

the outcomes of running Stringer on a firmware collection totalling 7,590 successfully un-

packed firmware images, corresponding to a total of 2,451,532 non-unique binaries. We

performed our tests on a machine with a 3rd generation Intel i5 dual-core CPU clocked

at 2.6GHz with 16GB of DDR3 RAM.
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6.5.1 Methodology

To perform firmware acquisition in Stringer, we have implemented web and FTP crawlers

for downloading firmware images from 30 different firmware vendors (using the same

methodology as §5.4.1). We implemented its firmware unpacking component using the

same approach described in §5.3. Of the firmware downloaded, it was able to successfully

extract 7,590 usable file-systems out of 15,438 images. Following firmware unpacking,

Stringer performs a search for ELF binaries in the extracted file-systems, and using our

metric, produces a report containing an ordered list of functions deemed to be most

important (i.e., that should be analysed first). Figure 6.2 depicts an excerpt of such a

report: it lists the function name and corresponding score, the static data that influences

its branching behaviour, and the individual scores assigned to items of static data.

[f] 37.66: sub_60118

34.89: 664225 (via: strcmp)

2.77: root (via: strcmp)

Figure 6.2: Excerpt of a report produced by Stringer.

While Stringer automates the majority of the analysis process, a degree of manual

intervention is required to discern the most interesting binaries from the processed dataset.

To find these cases, we perform semi-automated analysis of the reports Stringer generates.

We perform this analysis using two methodologies:

1. To discover routines handling common protocols that contain additional, undocu-

mented functionality, we devise simple models of what static data we expect to be

grouped together within protocol handler functions. For instance, for a web-server,

we expect the terms GET and POST and possibly, PUT, HEAD and DELETE to be grouped

together. We search for cases, where we find such terms, as well as other static data

that does not exist within our models. We then perform manual analysis using IDA

Pro to ascertain the functionality associated with the unexpected static data.
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2. To discover hard-coded credential checks, we search our reports for functions con-

taining static data indicative of authentication, e.g., admin, Administrator, and

root. As in case 1, we use IDA Pro to perform manual analysis of the functionality

associated with the identified static data comparisons.

In both cases, our manual analysis process is aided by the fact the functions and strings

of interest are available from the generated reports and so anomalous functionality, such

as backdoors or undocumented commands can quickly be checked for, and confirmed.

We note, that due to the modest amount of backdoors publicly available, that are

both present in embedded device firmware, and also of the class that can be detected by

Stringer, calculating the TP and FP rates of our technique is infeasible.

6.5.2 Case-studies

Due to the large number of firmware binaries processed as part of our analysis, in this

section, we present just highlights of that analysis, in the form of case-studies. Each

case-study follows a similar structure: we first present the scores and ranking of possible

comparison functions as computed by application of our heuristics (from §6.3). We then

detail interesting functions and static data identified by application of our metric and the

results of manually analysing them.

6.5.2.1 Identification of the FTP command set

The vsftpd FTP server, shared amongst numerous Linksys device firmware images pro-

vides a clear example of the effectiveness of our approach. The binary analysed contains

a total of 600 functions, uses static linking and is stripped of symbol information. Our

heuristic identifies 44 potential static data comparison functions. Those ranked highest

are: sub 10814 (394.84), sub 1622C (35.00), sub 10754 (27.20), and sub 139FC (12.20).

As vsftpd is open-source software, we are able to discover that sub 10814 corresponds

to the function str equal text – a string equality check for the vsftpd’s custom string
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implementation.

Our metric finds the highest ranking function to be the main protocol parsing routine:

sub C4F0 which is assigned a score of 942.08 (and corresponds to the process post login

function). The FTP command set handled by vsftpd is extensive; we, therefore, omit

the specific output of the tool and associated CFG due to its size.

The uniformity of the scores our metric assigns to the static data used in sub C4F0

essentially groups the data associated with FTP protocol message processing. The scores

reflect the function’s use of a state-machine to handle connections; which following match-

ing its input with a protocol message, transfers control to a secondary message-specific

handler function, which performs further input processing or executes the functionality

associated with the message. The group of highest scoring protocol messages (HELP, . . . )

are assigned scores of 16.00, while the lowest (such as PROT) are assigned 8.03. The largest

group of commands – assigned uniform scores of 10.00, contains the core FTP command

set (i.e., STOR, RETR, PASV, PORT, LIST, QUIT, . . . ).

6.5.2.2 Q-See DVR Hard-coded Credential Backdoor

Table 6.3: Scores for ZN9CLoginDlg5LogInEPKcS1 b.

Label Score Static Data Function Depends

1 171.39 admin strcmp {[]}
2 58.92 ppttzz51shezhi strcmp {[admin]}
3 45.13 6036logo strcmp {[admin]}
4 42.14 6036adws strcmp {[admin]}
5 37.54 6036huanyuan strcmp {[admin]}
6 35.21 6036market strcmp {[admin]}
7 31.05 jiamijiami6036 strcmp {[admin]}

In a number of firmware images for Q-See DVR products, Stringer is able to iden-

tify numerous hard-coded credentials1 which provide differing backdoor functionalities,

1To the best of our knowledge, these credentials constitute a previously undiscovered backdoor.
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and access to the device. The binary used in this case study, td3520, contains a to-

tal of 15,669 functions and is statically linked. Our heuristics for identifying static

data comparison functions identify 911 possible functions; those that are ranked high-

est are: strcmp (1464.70), strncmp (779.33), CRYPTO malloc (685.10) (from the stat-

ically linked OpenSSL library), ZNKSs7compareEPKc (C++’s string equality operator)

(376.20), strstr (306.00), and strcasecmp (196.00). All but one of these functions is a

static data comparison function; the single false positive, CRYPTO malloc, is identified due

to its usage patterns being almost identical to that of an expected comparison function,

as shown in Figure 6.3.

ADD R0, R11, #0x14

LDR R1, =0x6C8610 ; "pem_lib.c"

MOV R2, #0x136

BL CRYPTO_malloc

SUBS R10, R0, #0

BNE 0x5E8804

Figure 6.3: Example usage of CRYPTO malloc.

We identify the third highest ranked function by our metric as ZN9CLoginDlg5LogIn-

EPKcS1 b (scoring 421.38), which contains the hard-coded credential checking routine.

Table 6.3 shows the scores and sets of static data sequences of the static data extracted

from that function, while Figure 6.4 shows a simplified CFG representation of the function

with static data labelled as in Table 6.3.

We observe that successor nodes that are dependent on the highest ranked static

data (admin) follow from the left branch of the comparison node. All other static data

comparisons are dependent upon a successful comparison with admin. The static data

ranked as second most important isolates the most unique functionality relative to the

other identified static data.

We discovered the report of the binary using methodology 2 (as described in §6.5.1).

More precisely, we located it by searching the reports generated by Stringer for common
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Figure 6.4: CFG for ZN9CLoginDlg5LogInEPKcS1 b.

privileged usernames – in this case, admin matched. We verified the existence of the

backdoor manually using IDA Pro.

6.5.2.3 Ray Sharp DVR Hard-coded Credential Backdoor

We were able to use reports generated by Stringer to find a further hard-coded creden-

tial checking routine in firmware from another DVR vendor, Ray Sharp. The binary

containing the backdoor, raysharp dvr contains a total of 7,605 functions, is dynami-

cally linked and stripped of local symbol names. Our heuristics reveal the highest ranked

comparison functions to be those from the C standard library: strcmp (ranked highest)

(5170.30), strncmp (1109.73), strstr (353.93) and memcmp (222.00). It also found sub -

1C7EC (1351.96), which it ranked second; we were able to identify it as a wrapper around

strcmp by manual analysis using IDA Pro.

The functions our metric scores highest consist of complex parsing routines – indicated

by their relatively high scores compared to other interesting functions identified. We

found sub 60118 to contain backdoor-like functionality. Figure 6.5 details the CFG of
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the function along with the scores assigned to the username and password combination,

and Table 6.4 shows the scores as assigned by our metric, as well as the corresponding

computed static data sequence sets. Figure 6.6 shows an IDA Pro CFG snippet of the

backdoor.

Table 6.4: Scores for sub 60118.

Label Score Static Data Function Depends

1 30.23 664225 strcmp {[]}
2 2.77 root strcmp {[664225]}

(2)

(1)

Figure 6.5: Ray Sharp hard-coded
credential check.

Figure 6.6: IDA Pro CFG snippet of the Ray Sharp
backdoor.

We identified this binary using methodology 1 from §6.5.1; we searched the logs for

common usernames that are associated with privileged user accounts: in this case, root

matched. Our a posteriori research online revealed that (in contrast to our other case

studies), we were not the first to discover this backdoor in Ray Sharp devices. The

backdoor has been previously documented [133] and is found to be present in a multitude

of devices from many vendors, including: Swann, Lorex, URMET, KGuard, Defender,

DEAPA/DSP Cop, SVAT, Zmodo, BCS, Bolide, EyeForce, Atlantis, Protectron, Greatek,
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Soyo, Hi-View, Cosmos, and J2000.

6.5.2.4 TRENDnet Hard-coded Credential in HTTP Authentication

Through the use of Stringer, we were able to find another hard-coded credential pair, in

this case, in the bundled web-server found in the firmware of a number of TRENDnet de-

vices. The hard-coded credentials were located in the routine handling processing of basic

HTTP authentication. The credentials are compared against using the standard string

comparison function, strcmp, which our heuristics successfully rank the most probable

static data comparison function. Overall, it identifies 40 such functions, out of a total

of 391 within the binary. strcmp is ranked highest by a large margin, with a score of

1635.01, followed by strstr (481.20), nvram get (413.10), strncmp (265.45) and sub -

A2D0 (131.00). Through manual analysis, we identified that sub A2D0 provides a wrapper

around hsearch r – a lookup function for hash tables, evaluating to 0 on failure – and is

hence a false positive. Similarly, nvram get is a false positive, which serves to provide a

lookup of the embedded device’s NVRAM (see Chapter 2). In both of these cases, the call-

sites of the functions exhibit features consistent with static data comparison functions,

hence the false identification.

Our metric ranked the function containing the hard-coded credential pair as the eighth

most important function – sub B958, assigning it with a score of 827.99. From manual

analysis of the function, we found that whilst validating the credentials passed for HTTP

basic authentication, an additional code path checks for the hard-coded username/pass-

word pair: emptyuserrrrrrrrrrrr/emptypasswordddddddd using strcmp. The creden-

tials are assigned scores of 106.00 and 103.47 respectively, and rank as the second and

fourth most important items of static data used in the function. The most important is

the string used to detect if basic HTTP authentication is being used, which is assigned a

score of 151.84. We omit a complete diagrammatic representation of the CFG due to space

considerations, and instead show a CFG snippet captured using IDA Pro in Figure 6.7.
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Figure 6.7: IDA Pro CFG snippet of the TRENDnet backdoor.

We located this binary by using methodology 1 from §6.5.1; we constructed a model of

the basic HTTP authentication method, and searched the reports produced by Stringer

for the expected static data associated with that model. To the best of our knowledge,

the hard-coded credentials we found have not been previously documented.

6.5.2.5 Recovery of a Netgear SOAP-based Protocol Command Set

We were able to use Stringer to extract a proprietary SOAP-based RPC command set from

a web-server, found to be used by a number of Netgear devices. We discovered the RPC

functionality in an otherwise standard web-server, mini httpd. The binary we analysed

contains 331 functions in total; of those, our heuristics identified 60 as possible static data

comparison functions. Those that it ranked highest were a combination of functions from

the C standard library: strcmp, strstr and strcasecmp, which were assigned scores of

380.52, 185.00 and 184.00, and a custom static data comparison function (ranked second),
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Figure 6.8: CFG fragment for soap parent ctrl handle.

safestrcmp, which was assigned a score of 221.00.

Our metric ranks handle request (scoring 952.91) as the most important function,

which handles parsing and processing of the HTTP protocol. It ranks do file (assigned a

score of 486.47) the second most important, and the main function third (scoring 449.55)

– which provides argument parsing for the binary. It ranks soap parent ctrl handle as

the fourth most important function, which it assigns a score of 328.75. soap parent -

ctrl handle handles the processing of a SOAP-based RPC command set. The output of

Stringer for this function demonstrates its effectiveness in extracting protocol command

sets that are previously unknown to an analyst. The scores it assigns to individual com-

mand strings within the function are uniform. Figure 6.8 shows a fragment of the CFG

for soap parent ctrl handle, while Table 6.5 shows the scores assigned to the static

data compared against in that fragment.

We discovered this command set by searching the reports generated by Stringer for

web-server related protocol strings, in this case: GET. We found this string – amongst

other HTTP commands – in the higher scoring function handle request, and soap -

parent ctrl handle was subsequently found by looking at other high ranking functions

within the binary.
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Table 6.5: Selection of static data from soap parent ctrl handle.

Label Score Static Data Function Depends

1 7.64 EnableTrafficMeter strcmp {[]}
2 7.64 SetTrafficMeterOptions strcmp {[]}
3 7.64 SetGuestAccessEnabled strcmp {[]}
4 7.64 SetGuestAccessEnabled2 strcmp {[]}
5 7.64 SetGuestAccessNetwork strcmp {[]}
6 7.64 SetWLANNoSecurity strcmp {[]}
7 7.64 SetWLANWPAPSKByPassphrase strcmp {[]}

6.5.3 Performance

In this section, we assess the run-time performance of Stringer. Stringer takes on average

0.573s to process a given binary; however, for larger binaries, with a greater number of

functions, or more complex CFGs, this process can take considerably longer. As a concrete

example, Stringer takes 44.966 seconds to process the binary td3520 from the case study

in §6.5.2.2, which contains a total of 15,669 functions. Such a binary is a rare case,

particularly in Linux-based embedded device firmware, and even with such performance,

Stringer is clearly suitable for use in large-scale analysis. A significant portion of the total

runtime for Stringer can be attributed to the invocation of IDA Pro, which it uses to

export data required for CFG recovery. The total time taken to invoke IDA Pro takes on

average 11.26% of its execution time, while processing the exported data for use takes on

average 0.63% of the total time. The remainder of the time is due to computation of our

heuristic and metric scoring algorithms.

6.5.4 Comparison with Existing Techniques

Our techniques substantially improve upon existing techniques for identification of inter-

esting static data. From our research, past work has generally used:

• A combination of the UNIX facility strings to first extract stings from binaries,



6.5. Experimental Evaluation 166

and grep to process its output and locate interesting keywords.

• A more robust approach – revolving around the use of IDA Pro and IDAPython to

export static data coupled with function names, which is then subsequently manually

analysed with, for example, grep.

Neither of these existing tool combinations, however, provide any indication of the im-

portance of a given piece of static data in relation to any other. Furthermore, neither

provide a means of ranking the importance of functions in relation to how much of their

conditional processing is influenced by static data. The lack of both of these properties

limits the effectiveness of these methods, meaning that a large amount of manual analysis,

and some luck is required when analysing large binaries. Moreover, these techniques only

scale to locate functionality based upon known protocols or easily recognisable strings.

6.5.5 Required Manual Analysis

As noted in the previous section, our approach improves upon current augmented manual

analysis techniques. When compared to manual analysis alone, using the case study in

§6.5.2.2 as an example, manually checking the binary for the backdoor discovered, in the

worst case, amounts to checking a total of 15,669 functions, compared to just three when

using Stringer to first analyse the binary. Further, the analysis provided by Stringer not

only identifies the function of interest, but also the static data used as part of the hard-

coded credential checking routine: such static data can be searched for extremely quickly

when performing manual analysis using a tool such as IDA Pro, thus, use of the output

of Stringer in this way is able to further reduce the overall effort of manual analysis,

compared to an entirely manual approach.

In summary, the manual analysis required when using Stringer amounts to:

• Interpreting the report output by running Stringer: this implies manually analysing

each function in order of their scores as assigned by Stringer’s metric.
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• Using the static data identified within each function analysed as a basis for locat-

ing basic blocks that contain comparison functions and performing analysis of the

functionality they guard access to.

6.5.6 Limitations & Discussion

The analysis approach taken by Stringer relies on heuristics, and, as noted in Chapter 3,

such approaches are often negatively impacted when they encounter conditions not ac-

counted for by the observations used to devise their heuristics. Such conditions can be

exploited by a backdoor implementer in order to evade our approach and although from

our small-scale manual analysis efforts we have not encountered such conditions, we dis-

cuss them here for completeness and a thorough consideration of the limitations of our

approach.

As Stringer relies on detecting calls-sites of comparison functions, an effective means of

thwarting its analysis would be to perform inlining of static data comparison functions. In

such a case, if a hard-coded credential check was implemented using inline comparisons,

then Stringer would be unable to detect the usage of the hard-coded credentials (i.e.,

would produce a false-negative result). Similarly, if a backdoor implementer were to

devise non-standard comparison functions that were constructed specifically to violate the

assumptions in §6.3.1, Stringer would be unable to identify the call-sites of such functions,

and, thus, miss any, e.g., hard-coded credential check implemented using those functions,

again resulting in false negative results. In both cases, the heuristics Stringer relies upon

could be extended to handle such cases, however, as previously noted, from our manual

analysis of Linux-based embedded device firmware, we have not encountered a single

binary that utilises static data comparisons in a way that violates the assumptions used

to devise our heuristics. We attribute that, especially in the case of lack of inlined static

data comparisons, to the fact that the vast majority of (current) Linux-based firmware is
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composed of binaries that are compiled using extremely old compiler toolchains that do

not (at least by default) perform such optimisations.

6.6 Chapter Summary

In this chapter, we have presented a novel approach to identify static data comparison

functions within binaries, which when combined with our function-level scoring metric, as

demonstrated, is effective in discovering undocumented functionality and recovering text-

based protocol messages and commands. In the case of undocumented functionality, we

have identified three instances of authentication backdoors in commodity firmware images

from a number of different vendors. Furthermore, we have demonstrated our approach

is suitable for large-scale analysis, and have detailed two methodologies for reducing the

effort required by a human analyst processing the output of our techniques.

The key utility of our techniques lies in their ability to isolate functions of interest,

ranking them within the first tens of functions for an analyst to manually analyse. This

is in stark contrast to standard manual analysis, where an analyst often will have to trawl

through (potentially) thousands of functions in order to locate that same functionality.

A concrete example of this is demonstrated in our case-study of Q-See DVR firmware in

§6.5.2.2, whereby the most interesting function for an analyst – which contains a backdoor

– is ranked third most important out of 15,669 functions by use of our techniques.

Our approach improves on existing large-scale analysis methods targeted at embedded

device firmware by performing more complex static analyses, which consider the control-

flow properties of code, as opposed to propagating known bit-string patterns over a large

dataset of firmware (i.e., as in the approach taken by Costin et al. [76]). Moreover, our

techniques introduce a new means of identifying potential program functionality, which

can aid in other program analysis domains; thus, our techniques are applicable beyond

merely finding backdoor-like functionality within Linux-based embedded device firmware.
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Chapter 7

Conclusion & Future Directions

In the final part of this thesis, we draw conclusions from the work presented in previous

chapters, and provide future directions for research.

7.1 Contributions & Future Directions

The research presented in this thesis aims to provide a means of detecting backdoor-

like functionality within embedded device firmware. Due to the large number of devices

available, each having different compositions, we focus our efforts on devices constituting

the largest market share, which at the time of writing, are Linux-based devices, running

on ARM and MIPS processors.

7.1.1 A Definition for Backdoors

Detecting backdoors is a difficult task; automating that detection process is equally chal-

lenging. Evidence for these claims lies in the fact that while threats coined that term have

been known since at least 2000 [190], there is a distinct lack of tooling for their detection,

and the vast majority of them that are publicly documented, are still detected by labouri-

ous manual analysis. In Chapter 4, we noted that this is, at least in part, due to the term

backdoor, while casually used in both the literature and by the media, previously not hav-

171
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ing a concrete or rigorous definition. To overcome this, we provided such a definition, i.e.,

definition 4.1 in Chapter 4. Moreover, to better understand, reason about, and identify

backdoor-like functionality, we developed a framework for their componentisation, which

serves the dual role of reasoning about both their implementations, and methodologies

for their detection. Further, we introduced the notion of deniable backdoors in §4.5,

and discussed their implications when attempting to attribute accountability to backdoor

implementers. To build on this research, we consider the following directions:

A Backdoor Detection Approach Based on Framework from Chapter 4

As stated in Chapter 4, the framework we proposed allows us to reason both about current

backdoor detection methodologies, such as those we describe in Chapters 5 and 6, and

provides a premise for developing new backdoor detection methodologies, that consider

a more complete model of what a backdoor is. A clear direction for future research

would, therefore, be to investigate how to develop a backdoor detection methodology

that utilises both our proposed framework and corresponding model as a basis for its

approach. Such an approach could potentially be achieved by a combination of existing

methods, for example, using the output of Stringer [174] to guide the symbolic execution

of Firmalice [166].

Quantitative Evaluation of Backdoor Detection Methodologies

While development of new backdoor detection techniques is of course, fundamental, so

too is the means by which we evaluate those techniques and compare them to the current

state-of-the-art. In its current form, our framework provides a basis for comparing how,

and what components of backdoors a particular approach detects, but it does not provide

a quantifiable metric for measuring or comparing their performance, as is required for a

more rigorous experimental evaluation. This is a challenging task, as different method-

ologies will detect different types of backdoors, and there may be little cross-over between



173 7.1. Contributions & Future Directions

the two sets of backdoors two approaches aim to detect. Thus, future research could

investigate how to compare methodologies more rigorously; this could be done by, for

instance, constructing common datasets of different classes of backdoors, and using them

to measure the detection rates of new and existing approaches.

7.1.2 Anomalous & Undocumented Program Behaviour

In Chapter 5, we presented a semi-automated approach to detect hidden, undocumented

functionality (such as backdoors) within Linux-based embedded device firmware. We

implemented our approach in a tool called HumIDIFy [176], which, as we demonstrated,

is able to detect a number of backdoors. Additionally, it boasts a correct classification

rate of 96.45% in successfully identifying common program functionalities. Our techniques

implemented in HumIDIFy focus on identifying undocumented functionality in common

program types found prevalently in Linux-based firmware. To perform that identification,

we utilise a two-stage process. The first stage takes as input a program binary and

produces a classification label and a confidence value: the classification label tells us what

type of binary – e.g., web-server – it is and the confidence provides a measure of how

certain it is in assigning that label to the binary. In the second stage, this label is used to

select a (manually created) expected functionality profile, which is used to check to see if

the binary deviates from the expected properties defined within that functionality profile

(e.g., does it use API not common to binaries of its assigned class), which results in an

overall judgement: benign or anomalous.

Since our approach is restricted to only being able to classify commonly found binaries,

it faces the following problem: if HumIDIFy is presented with a binary that doesn’t fall

into any of the common classes it is able to identify, it still must assign a label. In the ideal

case, this label would be assigned with a low confidence value, and the binary would fail to

match its unexpected functionality profile, in the worst case it would be misclassified with
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a high confidence value and match its expected functionality profile. To overcome this,

future development of our techniques could instead attempt to classify binaries based on

more general properties, for example, higher-level meta-classes (e.g., this might include

a class that detects TCP-only services, or a class that detects services that start other

programs). Alternatively, HumIDIFy could provide easier extensibility with respect to

adding new program classes. In its current form, to add a new program class, four steps

are required:

1. Manually find example binaries that would be classified as the new program class.

2. Perform attribute extraction on those examples (i.e., map the input binaries to

attribute vectors).

3. Retrain the classifier component.

4. Manually write an expected functionality profile for the new program class.

In our current system, steps 2 and 3 are automated processes, while steps 1 and 4

are manual. To automate step 4, we would require a system that can find similarities in

how functionality manifests within each class of binary. For example, for the web-server

class, we would expect that process to identify that web-servers utilise TCP networking,

and a web-server that additionally employs UDP-based networking should be considered

anomalous. To automate the first step we would require an automated process to take as

input an arbitrary collection of binaries, and as output, assign those binaries meaningful

labels that are indicative of their functionality. New binaries presented to that classifier

would be assigned one of these classes as in the previous system. However, given the

labels assigned to binaries would no longer be human meaningful (at least in the same

way as labels generated and applied manually), substantial effort would be required to

create functionality profiles by hand for the generated classes; thus, if the first step were
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to be automated in this way, the final step would ideally also require automation. We see

that automation of this step points to classifying based on general program properties,

rather than concrete program types. Based on these observations, we see the following as

directions for future research:

Automated Generation of Program Classes

To address the first part of the automation process, one way of automatically deriving

program classes would be to use unsupervised learning. This would partition the input

training set into classes, based on the classifier algorithm, its parameters and the input

data. The approach we take in Chapter 5 uses API and strings to construct feature vectors

to represent programs, which, from small-scale experiments using unsupervised learning,

produced machine-generated program classes that had little meaning to a human analyst.

Thus, a future direction might be to extract program features based on meaningful func-

tionalities, for example, networking behaviours, file system behaviours and so on, and use

those features for unsupervised learning.

Automated Generation of Functionality Profiles

For automatic generation of functionality profiles, future research could investigate the

use of a standard technique often used in data mining and statistics: hierarchical cluster

analysis, specifically agglomerative hierarchical clustering (see, e.g., [129]). This (effec-

tively) unsupervised learning technique takes as input a dataset, and a means to compute

the distance between instances of that data (their dissimilarity). From this, it works in a

bottom-up manner: merging pairs of clusters (each instance is initially in its own cluster)

with the minimal distance between them: the new cluster’s position in the hierarchy will

be relative to the dissimilarity of the instances within it. Clustering data in this way

would allow us to identify collections of instances that are most similar. Applying this

methodology to generating functionality profiles could work as follows:
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• For a set of binaries that should be classified as the same program class where they

all contain no unexpected functionality, we could represent each of them as a set of

the API they use.

• We could use these sets as input to an agglomerative hierarchical clustering al-

gorithm, with the view of finding a cluster containing instances of programs that

share the same API, which we can use to represent the expected functionality of

their program class.

For the distance metric, we could use Jaccard distance, which computes the dissimi-

larity between two sets as:

dJ(Pi, Pj) = 1− J(Pi, Pj) =
|Pi ∪ Pj| − |Pi ∩ Pj|

|Pi ∪ Pj|

From the output of this process, we could synthesise a BFDL representation of the

expected functionality representing the set of API functions.

7.1.3 Undocumented Commands & Credentials

In Chapter 6, we proposed a new static analysis method that measures the individual

influence pieces of static data (such as strings) have upon the control-flow of a program’s

functions. We implemented our techniques in a tool, Stringer, which we demonstrate

is able to aid in identifying a number of backdoors in various Linux-based embedded

device firmwares. Our method automatically identifies static data comparison functions

within binaries, then labels each function’s basic blocks with the set of sequences of static

data that must be matched against to reach them. Using these sets, it then assigns a

score to each function, which measures the extent to which its branching behaviour (and

execution of isolated functionality) is influenced by comparisons with static data. We see

the following as a possible future direction for this work:
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Augmenting Existing Tools

As noted in Chapter 4, Stringer takes into account neither the input source, nor the

privileged state components of a backdoor, as modelled by our framework. As future

research, in an effort to extend its utility, and provide higher scoring to static data that

guards access to privileged functionality, we could, as taken in the approach of Firmalice,

manually identify the privileged states of the program being analysed, and incorporate

them into the calculation of our metric. In doing this, Stringer would score static data

that guards access to unique, privileged functionality highly, thus, better matching its

requirements outlined in §6.4.1.

7.2 Conclusion

In this thesis, we have not only addressed the problem of backdoor detection in embedded

device firmware, but provided a more fundamental definition to the term backdoor and

a corresponding model, which can be viewed as a premise for the development of new

backdoor techniques, applicable to both embedded device firmware and systems in general.

In this chapter, we have discussed avenues for future research building on the work

presented in this thesis. All of those avenues take a technical approach, however, we

note that, while developing further technical approaches to detect backdoors is, of course,

important, what is of equal importance – as highlighted in Chapter 4 – is the need to be

able to hold developers and manufacturers accountable for intentional vulnerabilities they

insert into their products. This effort requires more than a technical approach, and its

solution rather lies in the realms of policy and law. Though, as a community, encouraging

projects and organisations to provide greater transparency in their development processes,

such that individual developers and contributors can be held accountable for deliberate

attempts to compromise the security of programs and devices, will in the long-term,

reduce the prevalence of backdoors. This is especially important for binary-only software
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products, such as PC and embedded device firmware, where currently, there is a staggering

amount of products “backdoored on arrival”, without their developers being held properly

accountable.
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Appendix A

Evaluation of Attribute Selection Algorithms

Assessment of attribute selection algorithms for deltas 0.1 to 0.7:

Table A.1: CorrelationAttributeEval.

Threshold Correct (%)

0.1 58.1818%
0.2 58.1818%
0.3 58.1818%
0.4 67.8788%
0.5 62.4242%
0.6 63.6364%
0.7 59.3939%

Table A.2: GainRatioAttributeEval.

Threshold Correct (%)

0.1 58.1818%
0.2 58.1818%
0.3 58.1818%
0.4 67.8788%
0.5 62.4242%
0.6 63.6364%
0.7 59.3939%

Table A.3: InfoGainAttributeEval.

Threshold Correct (%)

0.1 58.1818%
0.2 58.1818%
0.3 58.1818%
0.4 67.8788%
0.5 62.4242%
0.6 63.6364%
0.7 59.3939%

Table A.4: OneRAttributeEval.

Threshold Correct (%)

0.1 58.1818%
0.2 58.1818%
0.3 58.1818%
0.4 67.8788%
0.5 62.4242%
0.6 63.6364%
0.7 59.3939%
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Table A.5: ReliefFAttributeEval.

Threshold Correct (%)

0.1 58.1818%
0.2 58.1818%
0.3 58.1818%
0.4 67.8788%
0.5 62.4242%
0.6 63.6364%
0.7 59.3939%

Table A.6: SymmetricalUncertAttributeEval.

Threshold Correct (%)

0.1 58.1818%
0.2 58.1818%
0.3 58.1818%
0.4 67.8788%
0.5 62.4242%
0.6 63.6364%
0.7 59.3939%



Appendix B

Example BFDL Functionality Profile

rule handles socket() =
function ref(”socket”)

rule handles tcp() =
handles socket() && (function ref(”recv”)

|| function ref(”send”))

rule handles udp() =
handles socket() && (function ref(”recvfrom”)

|| function ref(”sendto”))

rule telnetd() =
handles tcp() &&
!handles udp()

Figure B.1: Functionality profile for Telnet daemon.
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